期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Digital/Analog Simulation Platform for Distributed Power Flow Controller Based on ADPSS and dSPACE 被引量:7
1
作者 Aihong Tang Zhijian Lu +3 位作者 Huiyuan Yang Xinpeng Zou Yong Huang Xu Zheng 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第1期181-189,共9页
Distributed power flow controller,which is among the most powerful distributed flexible transmission equipments,is still only in the stage of the oretical research and digital simulation.In order to promote the engine... Distributed power flow controller,which is among the most powerful distributed flexible transmission equipments,is still only in the stage of the oretical research and digital simulation.In order to promote the engineering demonstration of a distributed power flow controller,it is urgent to establish a digital/analog simulation platform that supports closed-loop real-time simulation of a distributed power flow controller.In this paper,the electromagnetic transient model of a distributed power flow controller is established on ADPSS(advanced digital power system simulator).The rapid control prototype realized by dSPACE is connected to ADPSS to form a digital/analog simulation platform for a distributed power flow controller.Through a voltage control and power flow control simulation of the test system with a distributed power flow controller,the correctness and effectiveness of the constructed simulation platform are verified,which provides a new way for the verification of the new theory of a distributed power flow controller. 展开更多
关键词 ADPSS digital/analog simulation platform distributed power flow controller DSPACE rapid control prototype
原文传递
Multi-objective Coordination Control of Distributed Power Flow Controller 被引量:7
2
作者 Aihong Tang Yunlu Shao +3 位作者 Qiushi Xu Xu Zheng Hongsheng Zhao Dechao Xu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第3期348-354,共7页
In this paper,distributed power flow controller(DPFC)constraints are analyzed.The energy balance relationship between fundamental wave and third harmonic in series and shunt-side converter is deduced.A proportional in... In this paper,distributed power flow controller(DPFC)constraints are analyzed.The energy balance relationship between fundamental wave and third harmonic in series and shunt-side converter is deduced.A proportional integral(PI)controller of the DPFC is constructed.The PI controller uses the voltage amplitude and phase angle injected into the system in the series side,along with the modulation ratio of the three-phase converter on the shunt side as the control variables.A multiobjective coordinated control equation is proposed,which factors the constraints of the energy balance between series and shunt side,device capacity limit,safe operation limit,fundamental component,as well as third harmonic component of the injection voltage at the series side.The equation minimizes the variance between the actual value of the control target and its given value to ensure that the DC capacitor voltage,both in the series and shunt side,is stable at target value.Simulations are conducted to verify correctness and effectiveness of the proposed control method. 展开更多
关键词 distributed power flow controller energy balance multi-objective coordinated control PI controller
原文传递
Security Constrained Distributed Optimal Power Flow of Interconnected Power Systems
3
作者 哈比比 余贻鑫 《Transactions of Tianjin University》 EI CAS 2008年第3期208-216,共9页
The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblem... The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PClPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method. 展开更多
关键词 distributed optimal power flow interior point method predictor-corrector method security region
下载PDF
A Parallel Approach for Real-Time Power Flow in Distribution Networks
4
作者 Rafael G. Milbradt Luciane N. Canha +3 位作者 Pedro B. Zorrilla Alzenira R. Abaide Paulo R. Pereira Sandro R.Schmaedecke 《Journal of Energy and Power Engineering》 2013年第3期589-595,共7页
The new reality of smart distribution systems with use of generation sources of small and medium sizes brings new challenges for the operation of these systems. The complexity and the large number of nodes requires us... The new reality of smart distribution systems with use of generation sources of small and medium sizes brings new challenges for the operation of these systems. The complexity and the large number of nodes requires use of methods which can reduce the processing time of algorithms such as power flow, allowing its use in real time. This paper presents a known methodology for calculating the power flow in three phases using backward/forward sweep method, and also considering other network elements such as voltage regulators, shunt capacitors and sources of dispersed generation of types PV (active power and voltage) and PQ (active and reactive power). After that, new elements are introduced that allow the parallelization of this algorithm and an adequate distribution of work between the available processors. The algorithm was implemented using a multi-tiered architecture; the processing times were measured in many network configurations and compared with the same algorithm in the serial version. 展开更多
关键词 Distribution power flow real-time power flow distribution automation dispersed generation parallel algorithm.
下载PDF
Optimal integration of DGs into radial distribution network in the presence of plug-in electric vehicles to minimize daily active power losses and to improve the voltage profile of the system using bioinspired optimization algorithms 被引量:18
5
作者 Satish Kumar Injeti Vinod Kumar Thunuguntla 《Protection and Control of Modern Power Systems》 2020年第1期21-35,共15页
Purpose:The increase in plug-in electric vehicles(PEVs)is likely to see a noteworthy impact on the distribution system due to high electric power consumption during charging and uncertainty in charging behavior.To add... Purpose:The increase in plug-in electric vehicles(PEVs)is likely to see a noteworthy impact on the distribution system due to high electric power consumption during charging and uncertainty in charging behavior.To address this problem,the present work mainly focuses on optimal integration of distributed generators(DG)into radial distribution systems in the presence of PEV loads with their charging behavior under daily load pattern including load models by considering the daily(24 h)power loss and voltage improvement of the system as objectives for better system performance.Design/methodology/approach:To achieve the desired outcomes,an efficient weighted factor multi-objective function is modeled.Particle Swarm Optimization(PSO)and Butterfly Optimization(BO)algorithms are selected and implemented to minimize the objectives of the system.A repetitive backward-forward sweep-based load flow has been introduced to calculate the daily power loss and bus voltages of the radial distribution system.The simulations are carried out using MATLAB software.Findings:The simulation outcomes reveal that the proposed approach definitely improved the system performance in all aspects.Among PSO and BO,BO is comparatively successful in achieving the desired objectives.Originality/value:The main contribution of this paper is the formulation of the multi-objective function that can address daily active power loss and voltage deviation under 24-h load pattern including grouping of residential,industrial and commercial loads.Introduction of repetitive backward-forward sweep-based load flow and the modeling of PEV load with two different charging scenarios. 展开更多
关键词 Plug-in electric vehicles(PEVs) distributed generators(DGs) Repetitive distribution power flow Particle swarm optimization algorithm(PSO) Butterfly optimization(BO) Daily active power loss
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部