In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation pr...In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.展开更多
This paper presents a novel modified inter- active honey bee mating optimization (IHBMO) base fuzzy stochastic long-term approach for determining optimum location and size of distributed energy resources (DERs). T...This paper presents a novel modified inter- active honey bee mating optimization (IHBMO) base fuzzy stochastic long-term approach for determining optimum location and size of distributed energy resources (DERs). The Monte Carlo simulation method is used to model the uncertainties associated with long-term load forecasting, A proper combination of several objectives is considered in the objective function. Reduction of loss and power purchased from the electricity market, loss reduc- tion in peak load level and reduction in voltage deviation are considered simultaneously as the objective functions. First, these objectives are fuzzified and designed to be comparable with each other. Then, they are introduced into an IHBMO algorithm in order to obtain the solution which maximizes the value of integrated objective function. The output power orDERs is scheduled for each load level. An enhanced economic model is also proposed to justify investment on DER. An IEEE 30-bus radial distribution test system is used to illustrate the effectiveness of the proposed method.展开更多
This paper studies a distributed robust resource allocation problem with nonsmooth objective functions under polyhedral uncertain allocation parameters. In the considered distributed robust resource allocation problem...This paper studies a distributed robust resource allocation problem with nonsmooth objective functions under polyhedral uncertain allocation parameters. In the considered distributed robust resource allocation problem, the(nonsmooth) objective function is a sum of local convex objective functions assigned to agents in a multi-agent network. Each agent has a private feasible set and decides a local variable, and all the local variables are coupled with a global affine inequality constraint,which is subject to polyhedral uncertain parameters. With the duality theory of convex optimization,the authors derive a robust counterpart of the robust resource allocation problem. Based on the robust counterpart, the authors propose a novel distributed continuous-time algorithm, in which each agent only knows its local objective function, local uncertainty parameter, local constraint set, and its neighbors' information. Using the stability theory of differential inclusions, the authors show that the algorithm is able to find the optimal solution under some mild conditions. Finally, the authors give an example to illustrate the efficacy of the proposed algorithm.展开更多
基金supported in part by Beijing Natural Science Foundation(4152047)the 863 project No.2014AA01A701+1 种基金111 Project of China under Grant B14010China Mobile Research Institute under grant[2014]451
文摘In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.
文摘This paper presents a novel modified inter- active honey bee mating optimization (IHBMO) base fuzzy stochastic long-term approach for determining optimum location and size of distributed energy resources (DERs). The Monte Carlo simulation method is used to model the uncertainties associated with long-term load forecasting, A proper combination of several objectives is considered in the objective function. Reduction of loss and power purchased from the electricity market, loss reduc- tion in peak load level and reduction in voltage deviation are considered simultaneously as the objective functions. First, these objectives are fuzzified and designed to be comparable with each other. Then, they are introduced into an IHBMO algorithm in order to obtain the solution which maximizes the value of integrated objective function. The output power orDERs is scheduled for each load level. An enhanced economic model is also proposed to justify investment on DER. An IEEE 30-bus radial distribution test system is used to illustrate the effectiveness of the proposed method.
基金supported by the National Key Research and Development Program of China under Grant No.2016YFB0901902the National Natural Science Foundation of China under Grant Nos.61573344,61603378,61621063,and 61781340258+1 种基金Beijing Natural Science Foundation under Grant No.4152057Projects of Major International(Regional)Joint Research Program NSFC under Grant No.61720106011
文摘This paper studies a distributed robust resource allocation problem with nonsmooth objective functions under polyhedral uncertain allocation parameters. In the considered distributed robust resource allocation problem, the(nonsmooth) objective function is a sum of local convex objective functions assigned to agents in a multi-agent network. Each agent has a private feasible set and decides a local variable, and all the local variables are coupled with a global affine inequality constraint,which is subject to polyhedral uncertain parameters. With the duality theory of convex optimization,the authors derive a robust counterpart of the robust resource allocation problem. Based on the robust counterpart, the authors propose a novel distributed continuous-time algorithm, in which each agent only knows its local objective function, local uncertainty parameter, local constraint set, and its neighbors' information. Using the stability theory of differential inclusions, the authors show that the algorithm is able to find the optimal solution under some mild conditions. Finally, the authors give an example to illustrate the efficacy of the proposed algorithm.