The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing...Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing strategies relying on manual configuration,SDN may suffer from link congestion and inefficient bandwidth allocation among flows,which could degrade network performance significantly.In this paper,we propose EARS,an intelligence-driven experiential network architecture for automatic routing.EARS adapts deep reinforcement learning(DRL)to simulate the human methods of learning experiential knowledge,employs the closed-loop network control mechanism incorporating with network monitoring technologies to realize the interaction with network environment.The proposed EARS can learn to make better control decision from its own experience by interacting with network environment and optimize the network intelligently by adjusting services and resources offered based on network requirements and environmental conditions.Under the network architecture,we design the network utility function with throughput and delay awareness,differentiate flows based on their size characteristics,and design a DDPGbased automatic routing algorithm as DRL decision brain to find the near-optimal paths for mice and elephant flows.To validate the network architecture,we implement it on a real network environment.Extensive simulation results show that EARS significantly improve the network throughput and reduces the average packet delay in comparison with baseline schemes(e.g.OSPF,ECMP).展开更多
Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is...Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.展开更多
When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain ser...When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.展开更多
Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,t...Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.展开更多
Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively ...Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.展开更多
SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a diff...SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a difficult point and focus of SDN security research. Based on the characteristics of SDN, a DDoS attack detection method combining generalized entropy and PSOBP neural network is proposed. The traffic is pre-detected by the generalized entropy method deployed on the switch, and the detection result is divided into normal and abnormal. Locate the switch that issued the abnormal alarm. The controller uses the PSO-BP neural network to detect whether a DDoS attack occurs by further extracting the flow features of the abnormal switch. Experiments show that compared with other methods, the detection accurate rate is guaranteed while the CPU load of the controller is reduced, and the detection capability is better.展开更多
New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and hete...New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.展开更多
Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks...Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.展开更多
The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communi...The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks.展开更多
针对目前传统机动通信系统、主流软件定义网络(software defined network,SDN)的拓扑发现方法不适合基于分布式SDN的机动通信系统这一问题,遵循OpenFlow拓扑发现算法(OpenFlow discovery protocol,OFDP)移植传输控制协议/网际协议(trans...针对目前传统机动通信系统、主流软件定义网络(software defined network,SDN)的拓扑发现方法不适合基于分布式SDN的机动通信系统这一问题,遵循OpenFlow拓扑发现算法(OpenFlow discovery protocol,OFDP)移植传输控制协议/网际协议(transmission control protocol/Internet protocol,TCP/IP)相关协议到SDN网络的研究思路,对开放最短路径优先(open shortest path first,OSPF)协议进行优化,精简协议状态机、优化协议报文、增加协议功能并设计拓扑发现算法,提出一种适合基于分布式SDN的机动通信系统的拓扑发现方法,并搭建仿真实验平台进行验证。实验结果表明,优化后OSPF协议适应于分布式SDN网络,网络拓扑建链时间降低80%且重新收敛时间显著降低,建链开销平均每秒接收字节数、发送字节数分别下降了31.7%和21.5%,维持开销平均每秒收发字节数降低了45%,增加了收集信道种类等网络信息的新功能。展开更多
Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,t...Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.展开更多
为解决传统分散控制系统(Distributed Control System,DCS)存在的响应延迟、故障恢复慢以及安全防护能力不足等问题,文章基于软件定义网络(Software Defined Networking,SDN)技术设计并实现了火电厂DCS后台控制系统。通过介绍SDN技术与...为解决传统分散控制系统(Distributed Control System,DCS)存在的响应延迟、故障恢复慢以及安全防护能力不足等问题,文章基于软件定义网络(Software Defined Networking,SDN)技术设计并实现了火电厂DCS后台控制系统。通过介绍SDN技术与火电厂DCS系统,设计基于SDN技术的DCS系统架构,重点阐述实时控制反馈模块、故障检测恢复模块以及网络安全防护模块的具体设计与功能实现。通过实验分析,验证了基于SDN技术的优化方案在提高系统响应速度、增强故障恢复能力以及提升网络安全性方面的显著效果。展开更多
The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users...The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.展开更多
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
基金supported by the National Natural Science Foundation of China for Innovative Research Groups (61521003)the National Natural Science Foundation of China (61872382)+1 种基金the National Key Research and Development Program of China (2017YFB0803204)the Research and Development Program in Key Areas of Guangdong Province (No.2018B010113001)
文摘Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing strategies relying on manual configuration,SDN may suffer from link congestion and inefficient bandwidth allocation among flows,which could degrade network performance significantly.In this paper,we propose EARS,an intelligence-driven experiential network architecture for automatic routing.EARS adapts deep reinforcement learning(DRL)to simulate the human methods of learning experiential knowledge,employs the closed-loop network control mechanism incorporating with network monitoring technologies to realize the interaction with network environment.The proposed EARS can learn to make better control decision from its own experience by interacting with network environment and optimize the network intelligently by adjusting services and resources offered based on network requirements and environmental conditions.Under the network architecture,we design the network utility function with throughput and delay awareness,differentiate flows based on their size characteristics,and design a DDPGbased automatic routing algorithm as DRL decision brain to find the near-optimal paths for mice and elephant flows.To validate the network architecture,we implement it on a real network environment.Extensive simulation results show that EARS significantly improve the network throughput and reduces the average packet delay in comparison with baseline schemes(e.g.OSPF,ECMP).
基金performed in the Projects " LIGHTNESS : Low latency and high throughput dynamic network infrastructures for high performance datacentre interconnects" (No. 318606) "COSIGN: Combining Optics and SDN In next Generation data centre Networks" (No. 619572) supported by European Commission FP7
文摘Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.
基金supported by the National Basic Research Program of China (2012CB315903)the Program for Key Science and Technology Innovation Team of Zhejiang Province(2011R50010,2013TD20)+3 种基金the National High Technology Research Program of China(2015AA016103)the National Natural Science Foundation of China(61379118)the Research Fund of ZTE CorporationJiaxing Science and Technology Project (No.2014AY21021)
文摘When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.
基金This work was supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.
文摘Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.
基金supported by the Hebei Province Innovation Capacity Improvement Program of China under Grant No.179676278Dthe Ministry of Education Fund Project of China under Grant No.2017A20004
文摘SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a difficult point and focus of SDN security research. Based on the characteristics of SDN, a DDoS attack detection method combining generalized entropy and PSOBP neural network is proposed. The traffic is pre-detected by the generalized entropy method deployed on the switch, and the detection result is divided into normal and abnormal. Locate the switch that issued the abnormal alarm. The controller uses the PSO-BP neural network to detect whether a DDoS attack occurs by further extracting the flow features of the abnormal switch. Experiments show that compared with other methods, the detection accurate rate is guaranteed while the CPU load of the controller is reduced, and the detection capability is better.
文摘New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.
文摘Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.
基金This work was supported by the six talent peaks project in Jiangsu Province(No.XYDXX-012)Natural Science Foundation of China(No.62002045),China Postdoctoral Science Foundation(No.2021M690565)Fundamental Research Funds for the Cornell University(No.N2117002).
文摘The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks.
基金supported in part by the National Key R&D Program of China under Grant 2018YFA0701601in part by the National Natural Science Foundation of China(Grant No.62201605,62341110,U22A2002)in part by Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.
文摘为解决传统分散控制系统(Distributed Control System,DCS)存在的响应延迟、故障恢复慢以及安全防护能力不足等问题,文章基于软件定义网络(Software Defined Networking,SDN)技术设计并实现了火电厂DCS后台控制系统。通过介绍SDN技术与火电厂DCS系统,设计基于SDN技术的DCS系统架构,重点阐述实时控制反馈模块、故障检测恢复模块以及网络安全防护模块的具体设计与功能实现。通过实验分析,验证了基于SDN技术的优化方案在提高系统响应速度、增强故障恢复能力以及提升网络安全性方面的显著效果。
基金supported in part by the State Grid Scientific and Technological Projects of China(No.SGTYHT/21-JS-223)in part by the National Natural Science Foundation of China(No.52277118),in part by the Tianjin Science and Technology Planning Project(No.22ZLGCGX00050)in part by the 67th Postdoctoral Fund and Independent Innovation Fund of Tianjin University in 2021.
文摘The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.