The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim...The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.展开更多
The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-bran...The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.展开更多
Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared...Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.展开更多
Anewfault location algorithmfor double-circuit transmissionlines is described inthis paper.Theproposed method uses data extractedfromtwo ends of the transmissionlines andthus eliminates the effects ofthe source impeda...Anewfault location algorithmfor double-circuit transmissionlines is described inthis paper.Theproposed method uses data extractedfromtwo ends of the transmissionlines andthus eliminates the effects ofthe source impedance andthe fault resistance.The distributed parameter model and the modal transformationare also employed.Depending on modal transformation,the coupled equations of the lines are converted intodecoupled ones.Inthis way,the mutual coupling effects between adjacent circuits of the lines are eliminatedandtherefore an accurate fault location can be achieved.The proposed methodis tested via digital simulationusing EMTP in conjunction with MATLAB.The test results corroborate the high accuracy of the proposedmethod.展开更多
According to the existing research, the fault section location and fault location of passive distribution network and active distribution network are reviewed. Among them, fault location of passive distribution networ...According to the existing research, the fault section location and fault location of passive distribution network and active distribution network are reviewed. Among them, fault location of passive distribution network mainly introduces fault segment location based on transient state and steady state quantity and fault location based on transient quantity. The active distribution network mainly introduces the fault segment location based on the current amount and the switching capacity based on the distribution network topology. On this basis, the difficulties of fault location in the distribution network at present are analyzed, and the future development is prospected.展开更多
Presents the theory behind, the system design of the acquisition of parameters for and the experiment on the fault location by one terminal measurement in actual distribution network, and some of laws governing the on...Presents the theory behind, the system design of the acquisition of parameters for and the experiment on the fault location by one terminal measurement in actual distribution network, and some of laws governing the on site acquisition of parameters and fault location established through experimental research on actual power distribution lines.展开更多
Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vec...Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vector is formulated to estimate the fault line,which can be reconstructed from voltage sags measured at a few buses using compressive sensing(CS).The relationship between the virtual injected current ratio(VICR)and fault position is deduced from circuit analysis to pinpoint the fault.Furthermore,a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector,where two different sensing matrixes are utilized to improve the incoherence.The proposed method is validated in IEEE 34 node test feeder.Simulation results show asymmetric ground fault type,resistance,fault position and access of distributed generators(DGs)do not significantly influence performance of our method.In addition,it works effectively under various scenarios of noisy measurement and line parameter error.Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.展开更多
To improve location speed,accuracy and reliability,this paper proposes a fault location method for distribution networks based on the time matrix of fault traveling waves.First,an inherent time matrix is established a...To improve location speed,accuracy and reliability,this paper proposes a fault location method for distribution networks based on the time matrix of fault traveling waves.First,an inherent time matrix is established according to the normalized topology of the target distribution network,and a post-fault time matrix is obtained by extracting the head data of initial waves from traveling wave detection devices.A time determination matrix is then obtained using the difference operation between the two matrices.The features of the time determination matrix are used for fault section identification and fault distance calculation,to accurately locate faults.The method is modified by considering economic benefits,through the optimal configuration of detection devices of traveling waves when calculating fault distances.Simulation results show that the proposed method has good adaptation with higher fault location accu-racy than two other typical ones.It can deal with faults on invalid branches,and the error rate is under 0.5%even with connected DGs.展开更多
Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alte...Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alterations in steady-state characteristics following a fault occurrence.Most existing single-ended phasor domain methods assume a certain impedance of the remote-end system or consistent current phases at both ends.These problems present challenges to the applicability of con-ventional phasor-domain location methods.This paper presents a novel single-ended time domain fault location method for single-phase-to-ground faults,one which fully considers the distributed parameters of the line model.The fitting of transient signals in the time domain is real-ized to extract the instantaneous amplitude and phase.Then,to eliminate the error caused by assumptions of lumped series resistance in the Bergeron model,an im-proved numerical derivation is presented for the distrib-uted parameter line model.The instantaneous symmet-rical components are extracted for decoupling and inverse transformation of three-phase recording data.Based on the above,the equation of instantaneous phase constraint is established to effectively identify the fault location.The proposed location method reduces the negative effects of fault resistance and the uncertainty of remote end pa-rameters when relying on one-terminal data for localiza-tion.Additionally,the proposed fault analysis methods have the ability to adapt to transient processes in power systems.Through comparisons with existing methods in three different systems,the fault position is correctly identified within an error of 1%.Also,the results are not affected by sampling rates,data windows,fault inception angles,and load conditions. Index Terms—Fault location,distributed parameter line model,transient signal,renewable energy,instantaneous phase.展开更多
The 348 microearthquakes that occurred in Beijing and its neighboring areas(39°-41°,114°-117°E)during 1979 to March of 1992 are relocated in this study.Precision of hypocenter locations is improved...The 348 microearthquakes that occurred in Beijing and its neighboring areas(39°-41°,114°-117°E)during 1979 to March of 1992 are relocated in this study.Precision of hypocenter locations is improved by rechecking and supplementing readings of arriving times of the seismic phases used,testing and selecting the appropriate crustal model,and modifying the computer program.After the relocation,the number of earthquakes with focal depth determination has been increased to 313 from the previous 132.The overall average RMS residual of the observational arrival times has been reduced to 0.45±0.18 s from the previous value of 0.80±0.40 s.Nearly 10% of the relocated hypocenters,which are mostly in border regions of the area covered by the Beijing Telemetered Seismic Network,have been shifted more than 10 km.Epicenters of the relocated earthquakes are concentrated in the intermountainous basins,such as the Huai’an,Xuanhua,Huailai,and Zhuolu basins,and are related with the basin boundary faults between展开更多
With the increasing scale of distribution networks and the mass access of distributed generation,traditional central-ized fault location methods can no longer meet the performance requirements of speed and high accura...With the increasing scale of distribution networks and the mass access of distributed generation,traditional central-ized fault location methods can no longer meet the performance requirements of speed and high accuracy.There-fore,this paper proposes a fault segment location method based on spiking neural P systems and Bayesian estimation for distribution networks with distributed generation.First,the distribution network system topology is decoupled into single-branch networks.A spiking neural P system with excitatory and inhibitory synapses is then proposed to model the suspected faulty segment,and its matrix reasoning algorithm is executed to obtain a preliminary set of location results.Finally,the Bayesian estimation and contradiction principle are applied to verify and correct the ini-tial results to obtain the final location results.Simulation results based on the IEEE 33-node system validate the feasi-bility and effectiveness of the proposed method.展开更多
Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures...Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures and data information of power networks.To this end,this study proposes a fault diagnostic model for distribution systems based on deep graph learning.This model considers the physical structure of the power network as a significant constraint during model training,which endows the model with stronger information perception to resist abnormal data input and unknown application conditions.In addition,a special spatiotemporal convolutional block is utilized to enhance the waveform feature extraction ability.This enables the proposed fault diagnostic model to be more effective in dealing with both fault waveform changes and the spatial effects of faults.In addition,a multi-task learning framework is constructed for fault location and fault type analysis,which improves the performance and generalization ability of the model.The IEEE 33-bus and IEEE 37-bus test systems are modeled to verify the effectiveness of the proposed fault diagnostic model.Finally,different fault conditions,topological changes,and interference factors are considered to evaluate the anti-interference and generalization performance of the proposed model.Experimental results demonstrate that the proposed model outperforms other state-of-the-art methods.展开更多
This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere i...This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere in the network using fuzzy c-mean classification techniques. In addition, Sections 5 and 6 introduce two different methods for normalizing data and selecting the optimum number of clusters in order to classify data. Results and conclusions are given to show the feasibility for the suggested fault location method. Suggestion for future related research has been provided in Section 8.展开更多
This paper presents a properly designed branchcurrent based state estimator(BCBSE)used as the main core ofan accurate fault location approach(FLA)devoted to distribution networks.Contrary to the approaches available i...This paper presents a properly designed branchcurrent based state estimator(BCBSE)used as the main core ofan accurate fault location approach(FLA)devoted to distribution networks.Contrary to the approaches available in the literature,it uses only a limited set of conventional measurementsobtained from smart meters to accurately locate faults at busesor branches without requiring measurements provided by phasor measurement units(PMUs).This is possible due to themethods used to model the angular reference and the faultedbus,in addition to the proper choice of the weights in the stateestimator(SE).The proposed approach is based on a searchingprocedure composed of up to three stages:①the identificationof the faulted zones;②the identification of the bus closest tothe fault;and③the location of the fault itself,searching onbranches connected to the bus closest to the fault.Furthermore,this paper presents a comprehensive assessment of the proposedapproach,even considering the presence of distributed generation,and a sensitivity study on the proper weights required bythe SE for fault location purposes,which can not be found inthe literature.Results show that the proposed BCBSE-basedFLA is robust,accurate,and aligned with the requirements ofthe traditional and active distribution networks.展开更多
针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,...针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,结果表明:电弧电流的电磁辐射特征频段为20~30 MHz,该特征频段不会受到中性点接地方式、电弧接地介质与线路结构参数的显著影响,且特征频段内辐射信号在传播过程中衰减较慢。在此基础上,设计一种小型化三角形单极子–环形组合平面天线,工作频率为20~500 MHz。利用自制天线开展小型电弧故障定位实验,为后续配网电弧故障定位的应用研究提供基础。展开更多
目前电磁时间反演(electromagnetic time reversal,EMTR)多应用在单一线路故障定位,且现有判据在高阻抗接地情况下效果不理想。针对上述问题,基于EMTR故障定位原理和均匀传输线理论推导了传播过程中线路故障信号与测量信号的传递函数,...目前电磁时间反演(electromagnetic time reversal,EMTR)多应用在单一线路故障定位,且现有判据在高阻抗接地情况下效果不理想。针对上述问题,基于EMTR故障定位原理和均匀传输线理论推导了传播过程中线路故障信号与测量信号的传递函数,根据传递函数的相关性提出了P范数判据。利用ATP-EMTP搭建10 kV配电网线路,对比了2范数与P范数判据在复杂配电网中的定位性能,并验证了所提判据在混合配电网线路的适用性。最后,分析了配电网发生低阻抗及高阻抗接地故障下P范数判据的鲁棒性。仿真结果表明,该方法在过渡电阻高达3 kΩ的情况下能准确定位,且定位精度高,受噪声、故障类型和采样频率的影响小。展开更多
基金the National Natural Science Foundation of China(52177074).
文摘The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.
基金This work was funded by the project of State Grid Hunan Electric Power Research Institute(No.SGHNDK00PWJS2210033).
文摘The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.
基金supported by the National Natural Science Foundation of China(No.11905074).
文摘Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.
文摘Anewfault location algorithmfor double-circuit transmissionlines is described inthis paper.Theproposed method uses data extractedfromtwo ends of the transmissionlines andthus eliminates the effects ofthe source impedance andthe fault resistance.The distributed parameter model and the modal transformationare also employed.Depending on modal transformation,the coupled equations of the lines are converted intodecoupled ones.Inthis way,the mutual coupling effects between adjacent circuits of the lines are eliminatedandtherefore an accurate fault location can be achieved.The proposed methodis tested via digital simulationusing EMTP in conjunction with MATLAB.The test results corroborate the high accuracy of the proposedmethod.
文摘According to the existing research, the fault section location and fault location of passive distribution network and active distribution network are reviewed. Among them, fault location of passive distribution network mainly introduces fault segment location based on transient state and steady state quantity and fault location based on transient quantity. The active distribution network mainly introduces the fault segment location based on the current amount and the switching capacity based on the distribution network topology. On this basis, the difficulties of fault location in the distribution network at present are analyzed, and the future development is prospected.
文摘Presents the theory behind, the system design of the acquisition of parameters for and the experiment on the fault location by one terminal measurement in actual distribution network, and some of laws governing the on site acquisition of parameters and fault location established through experimental research on actual power distribution lines.
基金supported in part by Key-Area Research and Development Program of Guangdong Province(No.2020B010166004)State Key Program of National Natural Science Foundation of China under Grant(No.U1866210)Natural Science Foundation of Guangdong Province(No.2022A1515011587).
文摘Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vector is formulated to estimate the fault line,which can be reconstructed from voltage sags measured at a few buses using compressive sensing(CS).The relationship between the virtual injected current ratio(VICR)and fault position is deduced from circuit analysis to pinpoint the fault.Furthermore,a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector,where two different sensing matrixes are utilized to improve the incoherence.The proposed method is validated in IEEE 34 node test feeder.Simulation results show asymmetric ground fault type,resistance,fault position and access of distributed generators(DGs)do not significantly influence performance of our method.In addition,it works effectively under various scenarios of noisy measurement and line parameter error.Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.
基金funded by grants from the National Natural Science Foundation of China (61703345)the Chunhui Project Foundation of the Education Department of China (Z201980)the Open Research Subject of Key Laboratory of Fluid and Power Machinery (Xihua University),Ministry of Education (szjj2019-27).
文摘To improve location speed,accuracy and reliability,this paper proposes a fault location method for distribution networks based on the time matrix of fault traveling waves.First,an inherent time matrix is established according to the normalized topology of the target distribution network,and a post-fault time matrix is obtained by extracting the head data of initial waves from traveling wave detection devices.A time determination matrix is then obtained using the difference operation between the two matrices.The features of the time determination matrix are used for fault section identification and fault distance calculation,to accurately locate faults.The method is modified by considering economic benefits,through the optimal configuration of detection devices of traveling waves when calculating fault distances.Simulation results show that the proposed method has good adaptation with higher fault location accu-racy than two other typical ones.It can deal with faults on invalid branches,and the error rate is under 0.5%even with connected DGs.
文摘Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alterations in steady-state characteristics following a fault occurrence.Most existing single-ended phasor domain methods assume a certain impedance of the remote-end system or consistent current phases at both ends.These problems present challenges to the applicability of con-ventional phasor-domain location methods.This paper presents a novel single-ended time domain fault location method for single-phase-to-ground faults,one which fully considers the distributed parameters of the line model.The fitting of transient signals in the time domain is real-ized to extract the instantaneous amplitude and phase.Then,to eliminate the error caused by assumptions of lumped series resistance in the Bergeron model,an im-proved numerical derivation is presented for the distrib-uted parameter line model.The instantaneous symmet-rical components are extracted for decoupling and inverse transformation of three-phase recording data.Based on the above,the equation of instantaneous phase constraint is established to effectively identify the fault location.The proposed location method reduces the negative effects of fault resistance and the uncertainty of remote end pa-rameters when relying on one-terminal data for localiza-tion.Additionally,the proposed fault analysis methods have the ability to adapt to transient processes in power systems.Through comparisons with existing methods in three different systems,the fault position is correctly identified within an error of 1%.Also,the results are not affected by sampling rates,data windows,fault inception angles,and load conditions. Index Terms—Fault location,distributed parameter line model,transient signal,renewable energy,instantaneous phase.
基金This project was sponsored by the State Science and TechnologyCommission and State Seismological Bureau (85-907-04-01),China.Contribution No.95A0051.Instirute ofGeophysics,SSB,China.
文摘The 348 microearthquakes that occurred in Beijing and its neighboring areas(39°-41°,114°-117°E)during 1979 to March of 1992 are relocated in this study.Precision of hypocenter locations is improved by rechecking and supplementing readings of arriving times of the seismic phases used,testing and selecting the appropriate crustal model,and modifying the computer program.After the relocation,the number of earthquakes with focal depth determination has been increased to 313 from the previous 132.The overall average RMS residual of the observational arrival times has been reduced to 0.45±0.18 s from the previous value of 0.80±0.40 s.Nearly 10% of the relocated hypocenters,which are mostly in border regions of the area covered by the Beijing Telemetered Seismic Network,have been shifted more than 10 km.Epicenters of the relocated earthquakes are concentrated in the intermountainous basins,such as the Huai’an,Xuanhua,Huailai,and Zhuolu basins,and are related with the basin boundary faults between
基金funded by grants from the National Natural Science Foundation of China(61703345)the Chunhui Project Foundation of the Education Department of China(Z201980)the Open Research Subject of Key Laboratory of Fluid and Power Machinery(Xihua University),Ministry of Education(szjj2019-27).
文摘With the increasing scale of distribution networks and the mass access of distributed generation,traditional central-ized fault location methods can no longer meet the performance requirements of speed and high accuracy.There-fore,this paper proposes a fault segment location method based on spiking neural P systems and Bayesian estimation for distribution networks with distributed generation.First,the distribution network system topology is decoupled into single-branch networks.A spiking neural P system with excitatory and inhibitory synapses is then proposed to model the suspected faulty segment,and its matrix reasoning algorithm is executed to obtain a preliminary set of location results.Finally,the Bayesian estimation and contradiction principle are applied to verify and correct the ini-tial results to obtain the final location results.Simulation results based on the IEEE 33-node system validate the feasi-bility and effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(No.52277083)。
文摘Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures and data information of power networks.To this end,this study proposes a fault diagnostic model for distribution systems based on deep graph learning.This model considers the physical structure of the power network as a significant constraint during model training,which endows the model with stronger information perception to resist abnormal data input and unknown application conditions.In addition,a special spatiotemporal convolutional block is utilized to enhance the waveform feature extraction ability.This enables the proposed fault diagnostic model to be more effective in dealing with both fault waveform changes and the spatial effects of faults.In addition,a multi-task learning framework is constructed for fault location and fault type analysis,which improves the performance and generalization ability of the model.The IEEE 33-bus and IEEE 37-bus test systems are modeled to verify the effectiveness of the proposed fault diagnostic model.Finally,different fault conditions,topological changes,and interference factors are considered to evaluate the anti-interference and generalization performance of the proposed model.Experimental results demonstrate that the proposed model outperforms other state-of-the-art methods.
文摘This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere in the network using fuzzy c-mean classification techniques. In addition, Sections 5 and 6 introduce two different methods for normalizing data and selecting the optimum number of clusters in order to classify data. Results and conclusions are given to show the feasibility for the suggested fault location method. Suggestion for future related research has been provided in Section 8.
基金supported in part by the grant#2021/11380-5,Centro Paulista de Estudos da Transi??o Energética (CPTEn),São Paulo Research Foundation (FAPESP)the grant#88887.661856/2022-00,Coordenação de Aperfei?oamento de Pessoal de Nível Superior–Brasil (CAPES)the grant#88887.370014/2019-00,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)。
文摘This paper presents a properly designed branchcurrent based state estimator(BCBSE)used as the main core ofan accurate fault location approach(FLA)devoted to distribution networks.Contrary to the approaches available in the literature,it uses only a limited set of conventional measurementsobtained from smart meters to accurately locate faults at busesor branches without requiring measurements provided by phasor measurement units(PMUs).This is possible due to themethods used to model the angular reference and the faultedbus,in addition to the proper choice of the weights in the stateestimator(SE).The proposed approach is based on a searchingprocedure composed of up to three stages:①the identificationof the faulted zones;②the identification of the bus closest tothe fault;and③the location of the fault itself,searching onbranches connected to the bus closest to the fault.Furthermore,this paper presents a comprehensive assessment of the proposedapproach,even considering the presence of distributed generation,and a sensitivity study on the proper weights required bythe SE for fault location purposes,which can not be found inthe literature.Results show that the proposed BCBSE-basedFLA is robust,accurate,and aligned with the requirements ofthe traditional and active distribution networks.
文摘针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,结果表明:电弧电流的电磁辐射特征频段为20~30 MHz,该特征频段不会受到中性点接地方式、电弧接地介质与线路结构参数的显著影响,且特征频段内辐射信号在传播过程中衰减较慢。在此基础上,设计一种小型化三角形单极子–环形组合平面天线,工作频率为20~500 MHz。利用自制天线开展小型电弧故障定位实验,为后续配网电弧故障定位的应用研究提供基础。
文摘目前电磁时间反演(electromagnetic time reversal,EMTR)多应用在单一线路故障定位,且现有判据在高阻抗接地情况下效果不理想。针对上述问题,基于EMTR故障定位原理和均匀传输线理论推导了传播过程中线路故障信号与测量信号的传递函数,根据传递函数的相关性提出了P范数判据。利用ATP-EMTP搭建10 kV配电网线路,对比了2范数与P范数判据在复杂配电网中的定位性能,并验证了所提判据在混合配电网线路的适用性。最后,分析了配电网发生低阻抗及高阻抗接地故障下P范数判据的鲁棒性。仿真结果表明,该方法在过渡电阻高达3 kΩ的情况下能准确定位,且定位精度高,受噪声、故障类型和采样频率的影响小。