期刊文献+
共找到6,046篇文章
< 1 2 250 >
每页显示 20 50 100
A Distributed Photovoltaics Ordering Grid-Connected Method for Analyzing Voltage Impact in Radial Distribution Networks
1
作者 Cuiping Li Kunqi Gao +4 位作者 Can Chen Junhui Li Xiaoxiao Wang Yinchi Shao Xingxu Zhu 《Energy Engineering》 EI 2024年第10期2937-2959,共23页
In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba... In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact. 展开更多
关键词 Radial distribution network distributed photovoltaics photovoltaics grid-connected order degree electrical distance photovoltaics action area
下载PDF
Evaluation of Multi-Temporal-Spatial Scale Adjustment Capability and Cluster Optimization Operation Method for Distribution Networks with Distributed Photovoltaics
2
作者 Jiaxin Qiao Yuchen Hao +2 位作者 Yingqi Liao Fang Liang Jing Bian 《Energy Engineering》 EI 2024年第9期2655-2680,共26页
Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the f... Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the flexible regulation capabilities of distribution stations,amulti-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics,considering different geographical locations,coverage areas,and response capabilities.Firstly,the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed,and a resource regulation capability model is established to quantify the adjustable range of different regulation resources.On this basis,considering the limitations of line transmission capacity,a regulation capability assessment index for distribution stations is proposed to evaluate their regulation capabilities.Secondly,considering different geographical locations and coverage areas,a comprehensive performance index based on electrical distance modularity and active power balance is established,and a cluster division method based on genetic algorithms is proposed to fully leverage the coordination and complementarity among nodes and improve the active power matching degree within clusters.Simultaneously,an economic optimization model with the objective of minimizing the economic cost of the distribution station is established,comprehensively considering the safety constraints of the distribution network and the regulation constraints of resources.This model can provide scientific guidance for the economic dispatch of the distribution station area.Finally,case studies demonstrate that the proposed assessment and optimization methods effectively evaluate the regulation capabilities of distribution stations,facilitate the consumption of distributed photovoltaics,and enhance the economic efficiency of the distribution station area. 展开更多
关键词 distributed photovoltaic distribution station area assessment of adjustment capacity line transmission capacity economic optimization
下载PDF
Research on Scheduling Strategy of Flexible Interconnection Distribution Network Considering Distributed Photovoltaic and Hydrogen Energy Storage
3
作者 Yang Li Jianjun Zhao +2 位作者 Xiaolong Yang He Wang Yuyan Wang 《Energy Engineering》 EI 2024年第5期1263-1289,共27页
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of... Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method. 展开更多
关键词 Seasonal hydrogen storage flexible interconnection AC/DC distribution network photovoltaic absorption scheduling strategy
下载PDF
Comprehensive Benefit Evaluation of SZ Distributed Photovoltaic Power Generation Project Based on AHP-Matter-Element Extension Model
4
作者 Shuli Jing 《Journal of Electronic Research and Application》 2024年第1期60-68,共9页
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen... With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects. 展开更多
关键词 distributed photovoltaic power generation Comprehensive benefits EVALUATION
下载PDF
Modeling load distribution for rural photovoltaic grid areas using image recognition
5
作者 Ning Zhou Bowen Shang +1 位作者 Jinshuai Zhang Mingming Xu 《Global Energy Interconnection》 EI CSCD 2024年第3期270-283,共14页
Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,ru... Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability. 展开更多
关键词 Deep learning Remote sensing image recognition photovoltaic development Load distribution modeling Power flow calculation
下载PDF
A Wind Power Prediction Framework for Distributed Power Grids
6
作者 Bin Chen Ziyang Li +2 位作者 Shipeng Li Qingzhou Zhao Xingdou Liu 《Energy Engineering》 EI 2024年第5期1291-1307,共17页
To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article com... To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods. 展开更多
关键词 wind power prediction distributed power grid WRF mode deep learning variational mode decomposition
下载PDF
Design scheme for fast charging station for electric vehicles with distributed photovoltaic power generation 被引量:12
7
作者 Jing Zhang Chang Liu +5 位作者 Ruiming Yuan Taoyong Li Kang Li Bin Li Jianxiang Li Zhenyu Jiang 《Global Energy Interconnection》 2019年第2期150-159,共10页
The demand for fast charging is increasing owing to the rapid expansion of the market for electric vehicles. In addition, the power generation technology for distributed photovoltaic has matured. This paper presents a... The demand for fast charging is increasing owing to the rapid expansion of the market for electric vehicles. In addition, the power generation technology for distributed photovoltaic has matured. This paper presents a design scheme for a fast charging station for electric vehicles equipped with distributed photovoltaic power generation system taking the area with certain conditions in Beijing as an example construction site. The technical indexes and equipment lectotype covering the general framework and subsystems of the charging station are determined by analyzing the charging service demand of fast charging stations. In this study, the layout of the station is developed and the operation benefits of the station is analyzed. The design scheme realizes the design objective of "rationalization, modularization and intelligentization" of the fast charging station and can be used as reference for the construction of a fast charging network in urban area. 展开更多
关键词 Electric VEHICLE Fast CHARGING STATION CHARGING DEMAND Design scheme distributed photovoltaic
下载PDF
Large-Scale Distributed Photovoltaic Power Dispatching and Operation Management Review 被引量:2
8
作者 Nan Zhang Yuefeng Wang +3 位作者 Yuehui Huang Dewei Liu Yunfeng Gao Haifeng Li 《Journal of Power and Energy Engineering》 2015年第4期326-331,共6页
Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper an... Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China. 展开更多
关键词 distributed photovoltaic Power GRID-CONNECTED DISPATCHING and Operation PRIORITY CONSUMPTION
下载PDF
Security Assessment of Distribution System with Distributed Photovoltaic 被引量:1
9
作者 Weiping Zhu Zhicheng Wang +1 位作者 Xiaodong Yuan Ruonan Fan 《Journal of Power and Energy Engineering》 2015年第4期250-261,共12页
In order to evaluate the safe and stable operation of distribution network with the distributed photovoltaic (PV), the?security of distribution network is researched. On the basis of electricity supply security, volta... In order to evaluate the safe and stable operation of distribution network with the distributed photovoltaic (PV), the?security of distribution network is researched. On the basis of electricity supply security, voltage quality and network losses,?the index system of static security is established. The paper simulates the uncertainty and random characteristics of PV by OpenDSS. The typical scenes that PV accessed to the distribution network are designed.?The paper summarizes the results of voltage fluctuation and network losses and uses indices to quantify it under different scenes. Based on the index system, the paper proposes some recommendations on PV permeability, interconnected locations, dispersion degrees and power factors when the distributed PV accessed to the distribution network. 展开更多
关键词 SECURITY ASSESSMENT of distributION System with distributed photovoltaic
下载PDF
Convex decomposition of concave clouds for the ultra-short-term power prediction of distributed photovoltaic system 被引量:1
10
作者 蔡世波 Tong Jianjun +3 位作者 Bao Guanjun Pan Guobing Zhang Libin Xu Fang 《High Technology Letters》 EI CAS 2016年第3期305-312,共8页
Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Ado... Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Adopting minimum polygonal approximation (MPP) to demonstrate the contour of concave cloud, cloud features are described and the subdivision lines of convex decomposition for the concave clouds are determined by the centroid point scattering model and centroid angle func- tion, which realizes the convex decomposition of concave cloud. The result of MATLAB simulation indicates that the proposed algorithm can accurately detect cloud contour comers and recognize the concave points. The proposed decomposition algorithm has advantages of less time complexity and decomposition part numbers compared to traditional algorithms. So the established model can make the convex decomposition of complex concave clouds completely and quickly, which is available for the existing prediction algorithm for the ultra-short-term power output of distributed PV system based on the cloud features. 展开更多
关键词 distributed photovohaic (PV) system cloud features model centroid point scat-tering model convex decomposition
下载PDF
Energy Loss Analysis of Distributed Rooftop Photovoltaics in Industrial Parks
11
作者 Yu Xiao Kai Li +2 位作者 HongqiaoHuang Haibo Tan Hua Li 《Energy Engineering》 EI 2023年第2期511-527,共17页
The analysis of the loss of distributed photovoltaic power generation systems involves the interests of energy users,energy-saving service companies,and power grid companies,so it has always been the focus of the indu... The analysis of the loss of distributed photovoltaic power generation systems involves the interests of energy users,energy-saving service companies,and power grid companies,so it has always been the focus of the industry and society in some manner or another.However,the related analysis for an actual case that considers different cooperative corporations’benefits is lacking in the presently available literature.This paper takes the distributed rooftop photovoltaic power generation project in an industrial park as the object,studies the analysis and calculation methods of line loss and transformer loss,analyzes the change of transformer loss under different temperatures and different load rates,and compares the data and trend of electricity consumption and power generation in industrial parks before and after the photovoltaic operation.This paper explores and practices the analysis method of the operating loss of distributed photovoltaic power generation and provides an essential reference for the benefit analysis and investment cost estimation of distributed photovoltaic power generation systems in industrial parks.The analyzed results reveal that the change loss is stable after the photovoltaic is connected,and there is no additional transformer loss.And before and after the photovoltaic system installation,there was no significant change in the total monthly data difference between the total meter and the sub-meter. 展开更多
关键词 distributed photovoltaic generation line loss transformer loss power generation
下载PDF
A Combined Solar Photovoltaic Distributed Energy Source Appliance
12
作者 Himanshu Dehra 《Natural Resources》 2011年第2期75-86,共12页
The paper has analysed the state-of-art technology for a solar photovoltaic distributed energy source appliance. The success of implementation of photovoltaic (PV) power project is increased when PV module system is i... The paper has analysed the state-of-art technology for a solar photovoltaic distributed energy source appliance. The success of implementation of photovoltaic (PV) power project is increased when PV module system is integrated with building design process and is used as multi purpose appliance for use with building elements. The improvement in overall system efficiency of building integrated PV modules embedded in building fa?ade is achieved by minimizing and capturing energy losses. A novel solar energy utilisation technology for generation of electric and thermal power is presented by integration of ventilation and solar photovoltaic device with the heating, ventilating and air conditioning (HVAC) system. The testing appliance named as photovoltaic duct wall was a wooden frame assembly of double wall with air ventilation: two adjacent glass coated PV modules, air column, plywood board filled with polystyrene and dampers. The measurement data is collected from various sensors to read measurements of solar intensity, ambient air temperature, room air temperature, electric power, surface temperatures of PV modules and plywood board, air velocities and air temperatures in the air column. The enhancement in the air velocity of the air column is fulfilled with an exhaust fan fixed in an outdoor room. The simulation model is used to perform the two dimensional energy analyses with applied one dimensional solution of steady state heat conduction equations. The bases of simulation model are conjugating energy travel paths with network boundary conditions of convection, radiation exchange, heat storage ca- pacity, thermal storage capacity and heat transport. 展开更多
关键词 HVAC ENERGY SOURCE ENERGY APPLIANCE ENERGY distribution photovoltaic DUCT
下载PDF
The analysis of distributed photovoltaic access system schemes
13
作者 Yuting Pan Yuchen Chen +1 位作者 Zhiqiang Yuan Bo Liu 《International English Education Research》 2014年第12期70-73,共4页
As the share of photovoltaic power generation in power system has increased year by year, the optimization choice of access system schemes become one of the first and most important problems in grid before admitting p... As the share of photovoltaic power generation in power system has increased year by year, the optimization choice of access system schemes become one of the first and most important problems in grid before admitting photovoltaic power generation. Therefore, this article takes a proposed distributed photovoltaic as an example to research and analyze two kinds of high density multiple access points distributed photovoltaic access system schemes. The emphasis is making a comprehensive comparison and selection among the aspect of active power loss and economic benefit, etc. In the premise of ensuring the normal power generation of the photovoltaic system, it puts forward the recommended scheme that can help to spontaneous self-consumption, elimination on the spot, effectively decrease network loss and economic benefit. 展开更多
关键词 distributed photovoltaic power generation Access scheme Active power loss Economic benefit
下载PDF
Equivalent Method of Integrated Power Generation System of Wind, Photovoltaic and Energy Storage in Power Flow Calculation and Transient Simulation 被引量:10
14
作者 王皓怀 汤涌 +3 位作者 侯俊贤 刘楠 李碧辉 张宏宇 《中国电机工程学报》 EI CSCD 北大核心 2012年第1期I0001-I0026,共26页
针对工程实际开展风光储联合发电系统在潮流计算和机电暂态仿真中的等值方法研究,旨在为大容量风光储联合发电系统的并网仿真分析奠定基础。将潮流计算的等值分为单元机组和集电系统2部分来研究。单元机组等值采用根据不同控制模式选... 针对工程实际开展风光储联合发电系统在潮流计算和机电暂态仿真中的等值方法研究,旨在为大容量风光储联合发电系统的并网仿真分析奠定基础。将潮流计算的等值分为单元机组和集电系统2部分来研究。单元机组等值采用根据不同控制模式选取不同节点类型的方法,针对集电系统等值提出基于损耗不变原则的方法。等值模型和详细模型的算例结果表明,潮流计算等值方法具有较好的精度。在机电暂态仿真动态等值中,基于实际工程计算的最严重工况分析原则,提出运行在满出力点的单机“倍乘”等值模型,为工程计算中的风光储联合发电系统动态等值提供了一种解决方案。 展开更多
关键词 综合发电系统 暂态仿真 光伏发电 潮流计算 等效方法 电力系统 风能 功率
下载PDF
Probabilistic small signal stability analysis of power system with wind power and photovoltaic power based on probability collocation method 被引量:10
15
作者 Cai Yan Linli Zhou +2 位作者 Wei Yao Jinyu Wen Shijie Cheng 《Global Energy Interconnection》 2019年第1期19-28,共10页
Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renew... Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renewable energy has become a key problem. To address this problem, this study proposes a probabilistic collocation method(PCM)-based PSSSA for a power system consisting of wind farms and photovoltaic farms. Compared with the conventional Monte Carlo method, the proposed method meets the accuracy and precision requirements and greatly reduces the computation; therefore, it is suitable for the PSSSA of this power system. Case studies are conducted based on a 4-machine 2-area and New England systems, respectively. The simulation results show that, by reducing synchronous generator output to improve the penetration of renewable energy, the probabilistic small signal stability(PSSS) of the system is enhanced. Conversely, by removing part of the synchronous generators to improve the penetration of renewable energy, the PSSS of the system may be either enhanced or deteriorated. 展开更多
关键词 RENEWABLE energy PROBABILISTIC small signal stability PROBABILISTIC COLLOCATION method wind POWER photovoltaic POWER
下载PDF
Effect of photovoltaic panel electric field on the wind speed required for dust removal from the panels 被引量:2
16
作者 李兴财 王娟 +1 位作者 刘滢格 马鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期296-303,共8页
Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particl... Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particle removal from photovoltaic(PV)panels by compressed air by analyzing the force exerted on the dust deposited on inclined photovoltaic panels,which also included different electrification mechanisms of dust while it is in contact with the PV panel.The results show that the effect of the particle charging mechanism in the electric field generated by the PV panel is greatly smaller than the effect of the Van der Waals force and gravity,but the effect of the particle charged by the contact electrification mechanism in the electrostatic field is very pronounced.The wind speed required for dust removal from the PV panel increases linearly with the PV panel electric field,so we suggest that the nighttime,when the PV electric field is relatively small,would be more appropriate time for dust removal.The above results are of great scientific importance for accurately grasping the dust distribution law and for achieving scientific removal of dust on PV panels. 展开更多
关键词 photovoltaic power generation dust removal electrostatic force required wind speed contact electrification
下载PDF
Wind-sand movement characteristics and erosion mechanism of a solar photovoltaic array in the middle of the Hobq Desert,Northwestern China 被引量:2
17
作者 TANG Guo-dong MENG Zhong-ju +1 位作者 GAO Yong DANG Xiao-hong 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1340-1351,共12页
The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stati... The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas. 展开更多
关键词 Solar photovoltaic array wind flow field characteristics Sediment transport Hobq Desert
下载PDF
Analysis on flutter performance of flexible photovoltaic support based on full-order method
18
作者 Zhou Rui Wang Hao Xu Zidong 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期238-244,共7页
Taking a three-cable flexible photovoltaic(PV)support structure as the research subject,a finite element model was established.Utilizing a full-order flutter analysis method,the flutter critical wind speed and flutter... Taking a three-cable flexible photovoltaic(PV)support structure as the research subject,a finite element model was established.Utilizing a full-order flutter analysis method,the flutter critical wind speed and flutter frequency of the flexible PV support structure at a tilt angle of 0°were calculated.The results showed good agreement with wind tunnel test data.Further analysis examined the pretension effects in the load-bearing and stabilizing cables on the natural frequency and flutter critical wind speed of the flexible PV support structure.The research findings indicate increasing the pretension in the load-bearing cables significantly raises the natural frequencies of the first four modes.Specifically,as the pretension in the load-bearing cables increases from 22 to 102 kN,the flutter critical wind speed rises from 17.1 to 21.6 m/s.By contrast,the pretension in the stabilizing cable has a smaller effect on the natural frequency and flutter critical wind speed of the flexible PV support structure.When the pretension in the stabilizing cable increased from 22 to 102 kN,the flutter critical wind speed increased from 17.1 to 17.7 m/s.For wind-resistant design of flexible PV support structures,it is recommended to prioritize increasing the pretension in the load-bearing cables to enhance the structural flutter performance. 展开更多
关键词 flexible photovoltaic support flutter critical wind speed full-order method finite element model
下载PDF
Coordinated planning for flexible interconnection and energy storage system in low-voltage distribution networks to improve the accommodation capacity of photovoltaic 被引量:2
19
作者 Jiaguo Li Lu Zhang +1 位作者 Bo Zhang Wei Tang 《Global Energy Interconnection》 EI CSCD 2023年第6期700-713,共14页
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v... The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method. 展开更多
关键词 Low-voltage distribution network photovoltaic accommodation Flexible interconnection Energy storage system Bilevel programming
下载PDF
Reducing Condensation Inside the Photovoltaic(PV)Inverter according to the Effect of Diffusion as a Process of Vapor Transport
20
作者 Amal El Berry Marwa M.Ibrahim +1 位作者 A.A.Elfeky Mohamed F.Nasr 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1189-1207,共19页
A photovoltaic(PV)inverter is a vital component of a photovoltaic(PV)solar system.Photovoltaic(PV)inverter failure can mean a solar system that is no longer functioning.When electronic devices such as photovoltaic(PV)... A photovoltaic(PV)inverter is a vital component of a photovoltaic(PV)solar system.Photovoltaic(PV)inverter failure can mean a solar system that is no longer functioning.When electronic devices such as photovoltaic(PV)inverter devices are subjected to vapor condensation,a risk could occur.Given the amount of moisture in the air,saturation occurswhen the temperature drops to the dewpoint,and condensationmay formon surfaces.Numerical simulation with“COMSOL Software”is important for obtaining knowledge relevant to preventing condensation by using two steps.At first,the assumption was that the device’s water vapor concentration was homogeneous to evaluate the amount of liquid water accumulated on the internal walls of the photovoltaic(PV)inverter box.Second,by considering the effect of external wind velocity onmoisture transport at the air interface to evaluate water vapor transport outdoors and reduce condensation.General factorial designs are utilized for analyzing the nature of the relationship between the vapor condensation response and the variables.Reducing vapor condensation inside the solar inverter by the effect of external wind speed on diffusion as a process of transporting moister air outside the inverter box is the main solution for this problem.During the movement and assessment of the flow of water vapor,the impact of vapor condensation is reduced.The saturation period was determined by using a Boolean saturation indicator.The saturation indicator was set to 1 when saturation was detected(relative humidity greater than or equal to 1)and 0 otherwise.Calculating the flow and dispersion of moist air as a function of wind speed helped solve the problem. 展开更多
关键词 photovoltaic INVERTER failure vapor condensation wind velocity diffusion transport and general factorial
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部