To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-...To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-agent framework,examines the dynamic game situation before the contract being signed,and develops four information models.The analysis reveals a Pareto improvement in the game’s Nash equilibrium when comparing the four models from the standpoint of the supply chain.In the complete information scenario,the service level of the service provider,the customer company’s incentive effectiveness,and the supply chain system’s ultimate profit are all maximized.Furthermore,a coordinating mechanism for disposable profit is built in this study.The paper then suggests a blockchain-based architecture for the service outsourcing process supervision and a distributed incentive mechanism under the coordination mechanism in response to the inadequacy of the principal-agent theory to address the information asymmetry problem and the moral hazard problem.The experiment’s end findings demonstrate that both parties can benefit from the coordination mechanism,and the application of blockchain technology can resolve these issues and effectively encourage service providers.展开更多
Gently dipping fractures subjected to river incision are widely distributed on rock slopes.In this paper,a rock slope on the Nujiang River(China)is investigated to study the role of gently dipping fractures in the roc...Gently dipping fractures subjected to river incision are widely distributed on rock slopes.In this paper,a rock slope on the Nujiang River(China)is investigated to study the role of gently dipping fractures in the rock slopes evolution.Detailed field surveys indicate that gentle fractures are concentrated in four main zones.Moreover,the kinematics of the fracture system suggest that the genesis of these fractures can be synthesized into a progressive evolution model.This model indicates that the joints begin with the formation of an array of en echelon cracks that are subjected to continued crack elongation and shearing before ultimately approaching one another and interacting to form a complex joint system.Geomechanical analysis is performed to reveal the mechanisms of this genesis,and three main fracture patterns are identified based on the slope stress and are classified with respect to the slope evolution.Based on the detail field investigations and the evolutionary history of the river valley,we propose that intermittent incision by the river was the main factor contributing to the concentrated distribution of gently dipping joints.展开更多
To reduce the energy consumption of the LTE-A system,a distributed energy-saving mechanism based on Co MP(Co MPDESM) is proposed to solve the inadequate coverage problem under the dormant cells.First,the network is di...To reduce the energy consumption of the LTE-A system,a distributed energy-saving mechanism based on Co MP(Co MPDESM) is proposed to solve the inadequate coverage problem under the dormant cells.First,the network is divided into clusters based on the equivalent cell principle.Then,we transfer global optimization into a group of subproblems.Second,a joint processing-based cooperative cell selection model is constructed to determine cooperative cells and dormant cells.Third,the compensative cells with a determined threshold are selected to control users' access.Finally,a simulation is implemented in Matlab.Results show that the energy-saving rate can reach 36.4% and that the mechanism meets the network coverage requirement.Thus,joint processing can be effectively applied in an energy saving mechanism and used to improve the network performance of edge users without increasing transmission power.展开更多
The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin ...The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.展开更多
This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzz...This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.展开更多
Increasing penetration of distributed energy resources in the distribution network(DN)is threatening safe operation of the DN,which necessitates setup of the ancillary service market in the DN.In the ancillary service...Increasing penetration of distributed energy resources in the distribution network(DN)is threatening safe operation of the DN,which necessitates setup of the ancillary service market in the DN.In the ancillary service market,distribution system operator(DSO)is responsible for safety of the DN by procuring available capacities of aggregators.Unlike existing studies,this paper proposes a novel market mechanism composed of two parts:choice rule and payment rule.The proposed choice rule simultaneously considers social welfare and fairness,encouraging risk-averse aggregators to participate in the ancillary service market.It is then formulated as a linear programming problem,and a distributed solution using the multi-cut Benders decomposition is presented.Moreover,successful implementation of the choice rule depends on each aggregator’s truthful adoption of private parameters.Therefore,a payment rule is also designed,which is proved to possess two properties:incentive compatibility and individual rationality.Simulation results demonstrate effectiveness of the proposed choice rule on improving fairness and verify properties of the payment rule.展开更多
The wind pressure characteristics on a saddle roof at wind direction along the connection of the low points are systematically studied by the wind tunnel test. First, the distributions of the mean and the fluctuating ...The wind pressure characteristics on a saddle roof at wind direction along the connection of the low points are systematically studied by the wind tunnel test. First, the distributions of the mean and the fluctuating pressures on the saddle roof are provided. Through the wind pressure spectra, the process of generation, growth and break down of the vortex on the leading edge is presented from a microscopic aspect and then the distribution mechanism of the mean and fluctuating pressures along the vulnerable leading edge is explained. By analysis of the wind pressure spectra near the high points, it can be inferred that the body induced turbulence reflects itself as a high-frequency pressure fluctuation. Secondly, the third-and fourth-order statistical moments of the wind pressure are employed to identify the non-Gaussian nature of the pressure time history and to construct an easy tool to localize regions with a non-Gaussian feature. The cause of the non-Gaussian feature is discussed by virtue of the wind pressure spectra. It is concluded that the non-Gaussian feature of the wind pressure originates from the effects of flow separation and body-induced turbulence, and the former effect plays an obvious role.展开更多
In order to investigate the effect of water content on the energy evolution of red sandstone, the axial loading–unloading experiments on dry and water-saturated sandstone samples were conducted, and the distribution ...In order to investigate the effect of water content on the energy evolution of red sandstone, the axial loading–unloading experiments on dry and water-saturated sandstone samples were conducted, and the distribution and evolution of elastic energy and dissipated energy within the rock were measured.The results show that the saturation process from dry to fully-saturated states reduces the strength, rigidity and brittleness of the rock by 30.2%, 25.5% and 16.7%, respectively. The water-saturated sample has larger irreversible deformation in the pre-peak stage and smaller stress drop in the post-peak stage.The saturation process decreases the accumulation energy limit by 38.9%, but increases the dissipated energy and residual elastic energy density, thus greatly reducing the magnitude and rate of energy release. The water-saturated sample has lower conversion efficiency to elastic energy by 3% in the prepeak region; moreover, the elastic energy ratio falls with a smaller range in the post-peak stage.Therefore, saturation process can greatly reduce the risk of dynamic disaster, and heterogeneous water content can lead to dynamic disaster possibly on the other hand.展开更多
At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent....At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications.展开更多
In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate...In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.展开更多
The Internet of Thing IoT paradigm has emerged in numerous domains and it has achieved an exponential progress.Nevertheless,alongside this advancement,IoT networks are facing an ever-increasing rate of security risks ...The Internet of Thing IoT paradigm has emerged in numerous domains and it has achieved an exponential progress.Nevertheless,alongside this advancement,IoT networks are facing an ever-increasing rate of security risks because of the continuous and rapid changes in network environments.In order to overcome these security challenges,the fog system has delivered a powerful environment that provides additional resources for a more improved data security.However,because of the emerging of various breaches,several attacks are ceaselessly emerging in IoT and Fog environment.Consequently,the new emerging applications in IoT-Fog environment still require novel,distributed,and intelligent security models,controls,and decisions.In addition,the ever-evolving hacking techniques and methods and the expanded risks surfaces have demonstrated the importance of attacks detection systems.This proves that even advanced solutions face difficulties in discovering and recognizing these small variations of attacks.In fact,to address the above problems,Artificial Intelligence(AI)methods could be applied on the millions of terabytes of collected information to enhance and optimize the processes of IoT and fog systems.In this respect,this research is designed to adopt a new security scheme supported by an advanced machine learning algorithm to ensure an intelligent distributed attacks detection and a monitoring process that detects malicious attacks and updates threats signature databases in IoTFog environments.We evaluated the performance of our distributed approach with the application of certain machine learningmechanisms.The experiments show that the proposed scheme,applied with the Random Forest(RF)is more efficient and provides better accuracy(99.50%),better scalability,and lower false alert rates.In this regard,the distribution character of our method brings about faster detection and better learning.展开更多
The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational i...The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.展开更多
The faradaic ion transfer of protonated 1,10-phenanthrolino [H(Phen)^+] across the interface between unbuffered aqueous and 1,2-dichloroethane(DCE)solutions was inves- tigated by means of current scan polarography at ...The faradaic ion transfer of protonated 1,10-phenanthrolino [H(Phen)^+] across the interface between unbuffered aqueous and 1,2-dichloroethane(DCE)solutions was inves- tigated by means of current scan polarography at ascending aqueous electrolyte electrode, as well as chronopotentiometry.It follows from the splitting of the waves observed at the pH of aqueous phase(sodium sulfate solution)between 2.5—3.8 that neutral reagent(Phen) distributes into the aqueous phase,where it is protonated.The positive wave is associated with the mass transfer controlled by the H^+ influx,whereas the negative one is by the Phen influx.The reverse chronopotentiometry indicated that all the protonated transfer processes were reversible.A good agreement between experimental results and theoretical treatment was achieved.The aqueous acid dissociation constant of protonated Phen,K_a,can be evalu- ated from the dependence of the wave heights on the pH in the base of the equilibrium.展开更多
This study presents a novel roller piston pump,in which a cam guide-roller type rolling support is adopted to replace the sliding pair support of the swash plate-slipper pair to achieve the oil suction and discharge o...This study presents a novel roller piston pump,in which a cam guide-roller type rolling support is adopted to replace the sliding pair support of the swash plate-slipper pair to achieve the oil suction and discharge of the piston cavity.In addition,the shaft distribution is used to replace the original valve plate distribution and the driving shaft is used as the distribution shaft to remove the valve plate structure,which greatly simplifies the design of the axial piston pump.Such a configuration largely reduces the number of sliding friction pairs of the pump,and avoids the influence of the sliding friction pair on it under high-speed and variable-speed conditions.Firstly,mathematical models of the mechanical and volumetric efficiencies of the roller pump are deduced respectively through force analysis and the compressibility equation.Based on the numerical simulation of MATLAB and AMESim,the effects of load pressure and rotational speed on mechanical and volumetric efficiencies are studied respectively,and it is verified that the roller pump has no structural flow pulsation.The prototype pump is then designed and built,along with a special test rig.The outlet pressure,outlet flow,and torque of the pump under different load pressures and rotational speeds are measured,and the mechanical and volumetric efficiencies of the prototype pump under various load pressures and rotational speeds are obtained.The experimental results are in good agreement with the simulated analysis.When the load pressure is 8 MPa and the speed is 5000 r/min,the mechanical and the volumetric efficiencies are 85.5% and 96.8%,respectively.When the speed is increased to 10000 r/min,the mechanical and the volumetric efficiencies are 66.7% and 95.6%,respectively.The experimental results show that the proposed roller piston pump has excellent efficiency under wide-speed and high-speed conditions and can be a potential solution as a fuel pump in aerospace fuel systems.展开更多
Panax notoginseng is grown mainly in Yunnan Province.Under the present high-density planting patterns for the plant,to solve the problems of a high rate of seed damage and the inability to use a traditional single air...Panax notoginseng is grown mainly in Yunnan Province.Under the present high-density planting patterns for the plant,to solve the problems of a high rate of seed damage and the inability to use a traditional single air-blowing metering device,this paper designs a six-row air-blowing centralized precision seed-metering device for P.notoginseng to realize mechanized precision seeding of this species.This paper describes the working principle of the seed-metering device,and the main structural parameters are determined by combining theoretical calculations with simulation analysis.A mechanics model of the seed filling,cleaning and pressing processes of the seed-metering device was constructed.The seeds of P.notoginseng in Yunnan Province were selected as experimental subjects.An experimental study on the seed-metering performance of the seed-metering device was carried out using the quadratic rotation orthogonal combination test method.The outlet pressure of the air nozzle,forward velocity and cone angle of the hole were selected as test factors.Mathematical models of the grain spacing qualified index,miss index,multiple index and the coefficient of variation of the row displacement consistency were established to analyze the order of factors affecting indicators.Through parameter optimization,the optimum combination of parameters was determined as follows:the cone angle of the hole is 50°,the forward velocity is less than 0.73 m/s,and the outlet pressure of the air nozzle is 0.32-0.52 kPa.The qualified index of grain spacing is higher than 94%,the miss index is less than 3%,the multiple index is less than 5%,and the coefficient of variation of the row displacement consistency is less than 5%.The test results are essentially consistent with the optimization results.The metering device meets the requirements of precision seeding of P.notoginseng.This study provides a basis for the design of a six-row air-blowing centralized precision seed-metering device for P.notoginseng.展开更多
7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distributi...7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distribution, microstructure evolution and mechanical properties of joints along the thickness direction were investigated, and digital image correlation (DIC) was utilized to evaluate quantitatively the deformation of different zones during tensile tests. The results indicated that heat-affected zone (HAZ), the local softening region, was responsible for the early plastic deformation and also the fracture location for SS-FSW samples, while a rapid fracture was observed in weld nugget zone (WNZ) before yield behavior for all BB-FSW specimens. The ultimate tensile strength (UTS) of SS-FSW joints presented the highest value of 410 MPa, 82% of the base material, at a rotational speed of 300 rpm and welding speed of 60 mm/min, much higher than that of BB-FSW joints, with a joint efficiency of only 47%. This should be attributed to the Lazy S defect produced by a larger extent of heat input during the BB-FSW process, The whole joint exhibited a much higher elongation than the slices. Scanning electron microscopic (SEM) analysis of the fracture morphologies showed that joints failed through ductile fracture for SS-FSW and brittle fracture for BB-FSW.展开更多
The most important problem in the security of wireless sensor network (WSN) is to distribute keys for the sensor nodes and to establish a secure channel in an insecure environment. Since the sensor node has limited re...The most important problem in the security of wireless sensor network (WSN) is to distribute keys for the sensor nodes and to establish a secure channel in an insecure environment. Since the sensor node has limited resources, for instance, low battery life and low computational power, the key distribution scheme must be designed in an efficient manner. Recently many studies added a few high-level nodes into the network, called the heterogeneous sensor network (HSN). Most of these studies considered an application for two-level HSN instead of multi-level one. In this paper, we propose some definitions for multi-level HSN, and design a novel key management strategy based on the polynomial hash tree (PHT) method by using deployment knowledge. Our proposed strategy has lower computation and communication overheads but higher connectivity and resilience.展开更多
As a new solid state welding,pinless friction stir welding(PFSW) can be used to join thin-wall structures.In this study,four new pinless tools with different groove distributions were designed and manufactured in or...As a new solid state welding,pinless friction stir welding(PFSW) can be used to join thin-wall structures.In this study,four new pinless tools with different groove distributions were designed and manufactured in order to enrich technological storage of PFSW and obtain sound joint with high quality of alclad 2A12-T4 alloy.The results show that the small-obliquity tool is detrimental to the transfer of plasticized materials,resulting in the formation of kissing bond defect.For the through-groove tool or the large-curvature tool,bigger flashes form on the joint surface and alclad layer is observed in the nugget zone(NZ),deteriorating mechanical properties.Compared with the above-mentioned three tools,using the six-groove tool with rational curvature and obliquity can not only yield sound joint with small flashes and thickness reduction,but also prevent alclad from flowing into NZ,which has potential to weld thin alclad aluminum alloys.Meanwhile,the tensile strength and elongation of joint using the six-groove tool reach the maximum values of 362 MPa and 8.3%,up to 85.1% and 64% of BM.展开更多
The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0....The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0.93 eV(C-V) and 0.87 eV(I-V)/1.03 eV(C-V). However, the BH rises to 0.99 eV(I-V)/1.18 eV(C-V)and then slightly deceases to 0.92 eV(I-V)/1.03 eV(C-V) after annealing at 300 ℃ and 400 ℃. The utmost BH is attained after annealing at 300 ℃ and thus the optimum annealing for SBD is 300 ℃. By applying Cheung's functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung's and ΨS-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 ℃ annealing and then slightly increases after annealing at 400 ℃. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.展开更多
基金Province Keys Research and Development Program of Shandong(Soft Science Projects)[No.2021RKY01007]Major Scientific and Technological Innovation Projects in Shandong Province[No.2018CXGC0703].
文摘To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-agent framework,examines the dynamic game situation before the contract being signed,and develops four information models.The analysis reveals a Pareto improvement in the game’s Nash equilibrium when comparing the four models from the standpoint of the supply chain.In the complete information scenario,the service level of the service provider,the customer company’s incentive effectiveness,and the supply chain system’s ultimate profit are all maximized.Furthermore,a coordinating mechanism for disposable profit is built in this study.The paper then suggests a blockchain-based architecture for the service outsourcing process supervision and a distributed incentive mechanism under the coordination mechanism in response to the inadequacy of the principal-agent theory to address the information asymmetry problem and the moral hazard problem.The experiment’s end findings demonstrate that both parties can benefit from the coordination mechanism,and the application of blockchain technology can resolve these issues and effectively encourage service providers.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41521002 41130745+2 种基金 41272330)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No. SKLGP2016Z015)supported by the Funding of Science and Technology Office of Sichuan Province (Grant Nos. 2015JQ0020)
文摘Gently dipping fractures subjected to river incision are widely distributed on rock slopes.In this paper,a rock slope on the Nujiang River(China)is investigated to study the role of gently dipping fractures in the rock slopes evolution.Detailed field surveys indicate that gentle fractures are concentrated in four main zones.Moreover,the kinematics of the fracture system suggest that the genesis of these fractures can be synthesized into a progressive evolution model.This model indicates that the joints begin with the formation of an array of en echelon cracks that are subjected to continued crack elongation and shearing before ultimately approaching one another and interacting to form a complex joint system.Geomechanical analysis is performed to reveal the mechanisms of this genesis,and three main fracture patterns are identified based on the slope stress and are classified with respect to the slope evolution.Based on the detail field investigations and the evolutionary history of the river valley,we propose that intermittent incision by the river was the main factor contributing to the concentrated distribution of gently dipping joints.
基金partially supported by the National Natural Science Foundation of China(61271187)the "863" Project (2014AA01A701)+2 种基金the Provincial Natural Science Foundation of China(20122BAB211039)the PAPD fundthe CICAEET fund
文摘To reduce the energy consumption of the LTE-A system,a distributed energy-saving mechanism based on Co MP(Co MPDESM) is proposed to solve the inadequate coverage problem under the dormant cells.First,the network is divided into clusters based on the equivalent cell principle.Then,we transfer global optimization into a group of subproblems.Second,a joint processing-based cooperative cell selection model is constructed to determine cooperative cells and dormant cells.Third,the compensative cells with a determined threshold are selected to control users' access.Finally,a simulation is implemented in Matlab.Results show that the energy-saving rate can reach 36.4% and that the mechanism meets the network coverage requirement.Thus,joint processing can be effectively applied in an energy saving mechanism and used to improve the network performance of edge users without increasing transmission power.
文摘The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62263005)Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA238029)+2 种基金Laboratory of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region (Grant No. 2022GXZDSY004)Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023298)Innovation Project of GUET Graduate Education (Grant Nos. 2022YCXS149 and 2022YCXS155)。
文摘This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.
基金supported by the National Natural Science Foundation of China(No.52177077).
文摘Increasing penetration of distributed energy resources in the distribution network(DN)is threatening safe operation of the DN,which necessitates setup of the ancillary service market in the DN.In the ancillary service market,distribution system operator(DSO)is responsible for safety of the DN by procuring available capacities of aggregators.Unlike existing studies,this paper proposes a novel market mechanism composed of two parts:choice rule and payment rule.The proposed choice rule simultaneously considers social welfare and fairness,encouraging risk-averse aggregators to participate in the ancillary service market.It is then formulated as a linear programming problem,and a distributed solution using the multi-cut Benders decomposition is presented.Moreover,successful implementation of the choice rule depends on each aggregator’s truthful adoption of private parameters.Therefore,a payment rule is also designed,which is proved to possess two properties:incentive compatibility and individual rationality.Simulation results demonstrate effectiveness of the proposed choice rule on improving fairness and verify properties of the payment rule.
基金The National Natural Science Foundation of China (No.50678036)Jiangsu Civil Engineering Graduate Center for Innovation and Academic Communication Foundation
文摘The wind pressure characteristics on a saddle roof at wind direction along the connection of the low points are systematically studied by the wind tunnel test. First, the distributions of the mean and the fluctuating pressures on the saddle roof are provided. Through the wind pressure spectra, the process of generation, growth and break down of the vortex on the leading edge is presented from a microscopic aspect and then the distribution mechanism of the mean and fluctuating pressures along the vulnerable leading edge is explained. By analysis of the wind pressure spectra near the high points, it can be inferred that the body induced turbulence reflects itself as a high-frequency pressure fluctuation. Secondly, the third-and fourth-order statistical moments of the wind pressure are employed to identify the non-Gaussian nature of the pressure time history and to construct an easy tool to localize regions with a non-Gaussian feature. The cause of the non-Gaussian feature is discussed by virtue of the wind pressure spectra. It is concluded that the non-Gaussian feature of the wind pressure originates from the effects of flow separation and body-induced turbulence, and the former effect plays an obvious role.
基金provided by the Fundamental Research Funds for the Central Universities(No.2014QNA80)the Project funded by China Postdoctoral Science Foundation(No.2014M550315)+2 种基金a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11202108)the Natural Science Foundation of Jiangsu Province(No.BK20140189)
文摘In order to investigate the effect of water content on the energy evolution of red sandstone, the axial loading–unloading experiments on dry and water-saturated sandstone samples were conducted, and the distribution and evolution of elastic energy and dissipated energy within the rock were measured.The results show that the saturation process from dry to fully-saturated states reduces the strength, rigidity and brittleness of the rock by 30.2%, 25.5% and 16.7%, respectively. The water-saturated sample has larger irreversible deformation in the pre-peak stage and smaller stress drop in the post-peak stage.The saturation process decreases the accumulation energy limit by 38.9%, but increases the dissipated energy and residual elastic energy density, thus greatly reducing the magnitude and rate of energy release. The water-saturated sample has lower conversion efficiency to elastic energy by 3% in the prepeak region; moreover, the elastic energy ratio falls with a smaller range in the post-peak stage.Therefore, saturation process can greatly reduce the risk of dynamic disaster, and heterogeneous water content can lead to dynamic disaster possibly on the other hand.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.50974060)the State Safety Production Science and Technology Development Plan (No.06-396)
文摘At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications.
文摘In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.
文摘The Internet of Thing IoT paradigm has emerged in numerous domains and it has achieved an exponential progress.Nevertheless,alongside this advancement,IoT networks are facing an ever-increasing rate of security risks because of the continuous and rapid changes in network environments.In order to overcome these security challenges,the fog system has delivered a powerful environment that provides additional resources for a more improved data security.However,because of the emerging of various breaches,several attacks are ceaselessly emerging in IoT and Fog environment.Consequently,the new emerging applications in IoT-Fog environment still require novel,distributed,and intelligent security models,controls,and decisions.In addition,the ever-evolving hacking techniques and methods and the expanded risks surfaces have demonstrated the importance of attacks detection systems.This proves that even advanced solutions face difficulties in discovering and recognizing these small variations of attacks.In fact,to address the above problems,Artificial Intelligence(AI)methods could be applied on the millions of terabytes of collected information to enhance and optimize the processes of IoT and fog systems.In this respect,this research is designed to adopt a new security scheme supported by an advanced machine learning algorithm to ensure an intelligent distributed attacks detection and a monitoring process that detects malicious attacks and updates threats signature databases in IoTFog environments.We evaluated the performance of our distributed approach with the application of certain machine learningmechanisms.The experiments show that the proposed scheme,applied with the Random Forest(RF)is more efficient and provides better accuracy(99.50%),better scalability,and lower false alert rates.In this regard,the distribution character of our method brings about faster detection and better learning.
文摘The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.
基金Project supported by the National Natural Science Foundation of China.
文摘The faradaic ion transfer of protonated 1,10-phenanthrolino [H(Phen)^+] across the interface between unbuffered aqueous and 1,2-dichloroethane(DCE)solutions was inves- tigated by means of current scan polarography at ascending aqueous electrolyte electrode, as well as chronopotentiometry.It follows from the splitting of the waves observed at the pH of aqueous phase(sodium sulfate solution)between 2.5—3.8 that neutral reagent(Phen) distributes into the aqueous phase,where it is protonated.The positive wave is associated with the mass transfer controlled by the H^+ influx,whereas the negative one is by the Phen influx.The reverse chronopotentiometry indicated that all the protonated transfer processes were reversible.A good agreement between experimental results and theoretical treatment was achieved.The aqueous acid dissociation constant of protonated Phen,K_a,can be evalu- ated from the dependence of the wave heights on the pH in the base of the equilibrium.
基金supported by the National Key Research and Development Program of China(No.2019YFB2005202).
文摘This study presents a novel roller piston pump,in which a cam guide-roller type rolling support is adopted to replace the sliding pair support of the swash plate-slipper pair to achieve the oil suction and discharge of the piston cavity.In addition,the shaft distribution is used to replace the original valve plate distribution and the driving shaft is used as the distribution shaft to remove the valve plate structure,which greatly simplifies the design of the axial piston pump.Such a configuration largely reduces the number of sliding friction pairs of the pump,and avoids the influence of the sliding friction pair on it under high-speed and variable-speed conditions.Firstly,mathematical models of the mechanical and volumetric efficiencies of the roller pump are deduced respectively through force analysis and the compressibility equation.Based on the numerical simulation of MATLAB and AMESim,the effects of load pressure and rotational speed on mechanical and volumetric efficiencies are studied respectively,and it is verified that the roller pump has no structural flow pulsation.The prototype pump is then designed and built,along with a special test rig.The outlet pressure,outlet flow,and torque of the pump under different load pressures and rotational speeds are measured,and the mechanical and volumetric efficiencies of the prototype pump under various load pressures and rotational speeds are obtained.The experimental results are in good agreement with the simulated analysis.When the load pressure is 8 MPa and the speed is 5000 r/min,the mechanical and the volumetric efficiencies are 85.5% and 96.8%,respectively.When the speed is increased to 10000 r/min,the mechanical and the volumetric efficiencies are 66.7% and 95.6%,respectively.The experimental results show that the proposed roller piston pump has excellent efficiency under wide-speed and high-speed conditions and can be a potential solution as a fuel pump in aerospace fuel systems.
基金This research was supported by the National Natural Science Foundation of China(51975265,31960366)the Key Grant Project of Yunnan Province(2018ZC001-3,2018ZC001-4,2018ZC001-5)the Yunnan Province University Engineering Research Center Construction Plan Project.
文摘Panax notoginseng is grown mainly in Yunnan Province.Under the present high-density planting patterns for the plant,to solve the problems of a high rate of seed damage and the inability to use a traditional single air-blowing metering device,this paper designs a six-row air-blowing centralized precision seed-metering device for P.notoginseng to realize mechanized precision seeding of this species.This paper describes the working principle of the seed-metering device,and the main structural parameters are determined by combining theoretical calculations with simulation analysis.A mechanics model of the seed filling,cleaning and pressing processes of the seed-metering device was constructed.The seeds of P.notoginseng in Yunnan Province were selected as experimental subjects.An experimental study on the seed-metering performance of the seed-metering device was carried out using the quadratic rotation orthogonal combination test method.The outlet pressure of the air nozzle,forward velocity and cone angle of the hole were selected as test factors.Mathematical models of the grain spacing qualified index,miss index,multiple index and the coefficient of variation of the row displacement consistency were established to analyze the order of factors affecting indicators.Through parameter optimization,the optimum combination of parameters was determined as follows:the cone angle of the hole is 50°,the forward velocity is less than 0.73 m/s,and the outlet pressure of the air nozzle is 0.32-0.52 kPa.The qualified index of grain spacing is higher than 94%,the miss index is less than 3%,the multiple index is less than 5%,and the coefficient of variation of the row displacement consistency is less than 5%.The test results are essentially consistent with the optimization results.The metering device meets the requirements of precision seeding of P.notoginseng.This study provides a basis for the design of a six-row air-blowing centralized precision seed-metering device for P.notoginseng.
基金financial support of the project from the National Natural Science Foundation of China(No.51405392)Specialized Research Fund for the Doctoral Program of Higher Education(No.20136102120022)Hong Kong Scholar Program(No.XJ2016043)
文摘7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distribution, microstructure evolution and mechanical properties of joints along the thickness direction were investigated, and digital image correlation (DIC) was utilized to evaluate quantitatively the deformation of different zones during tensile tests. The results indicated that heat-affected zone (HAZ), the local softening region, was responsible for the early plastic deformation and also the fracture location for SS-FSW samples, while a rapid fracture was observed in weld nugget zone (WNZ) before yield behavior for all BB-FSW specimens. The ultimate tensile strength (UTS) of SS-FSW joints presented the highest value of 410 MPa, 82% of the base material, at a rotational speed of 300 rpm and welding speed of 60 mm/min, much higher than that of BB-FSW joints, with a joint efficiency of only 47%. This should be attributed to the Lazy S defect produced by a larger extent of heat input during the BB-FSW process, The whole joint exhibited a much higher elongation than the slices. Scanning electron microscopic (SEM) analysis of the fracture morphologies showed that joints failed through ductile fracture for SS-FSW and brittle fracture for BB-FSW.
文摘The most important problem in the security of wireless sensor network (WSN) is to distribute keys for the sensor nodes and to establish a secure channel in an insecure environment. Since the sensor node has limited resources, for instance, low battery life and low computational power, the key distribution scheme must be designed in an efficient manner. Recently many studies added a few high-level nodes into the network, called the heterogeneous sensor network (HSN). Most of these studies considered an application for two-level HSN instead of multi-level one. In this paper, we propose some definitions for multi-level HSN, and design a novel key management strategy based on the polynomial hash tree (PHT) method by using deployment knowledge. Our proposed strategy has lower computation and communication overheads but higher connectivity and resilience.
基金supported by the National Natural Science Foundation of China(No.51204111)the Natural Science Foundation of Liaoning Province(No.2014024008)the Aeronautical Science Foundation of China(No.2014ZE54021)
文摘As a new solid state welding,pinless friction stir welding(PFSW) can be used to join thin-wall structures.In this study,four new pinless tools with different groove distributions were designed and manufactured in order to enrich technological storage of PFSW and obtain sound joint with high quality of alclad 2A12-T4 alloy.The results show that the small-obliquity tool is detrimental to the transfer of plasticized materials,resulting in the formation of kissing bond defect.For the through-groove tool or the large-curvature tool,bigger flashes form on the joint surface and alclad layer is observed in the nugget zone(NZ),deteriorating mechanical properties.Compared with the above-mentioned three tools,using the six-groove tool with rational curvature and obliquity can not only yield sound joint with small flashes and thickness reduction,but also prevent alclad from flowing into NZ,which has potential to weld thin alclad aluminum alloys.Meanwhile,the tensile strength and elongation of joint using the six-groove tool reach the maximum values of 362 MPa and 8.3%,up to 85.1% and 64% of BM.
文摘The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0.93 eV(C-V) and 0.87 eV(I-V)/1.03 eV(C-V). However, the BH rises to 0.99 eV(I-V)/1.18 eV(C-V)and then slightly deceases to 0.92 eV(I-V)/1.03 eV(C-V) after annealing at 300 ℃ and 400 ℃. The utmost BH is attained after annealing at 300 ℃ and thus the optimum annealing for SBD is 300 ℃. By applying Cheung's functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung's and ΨS-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 ℃ annealing and then slightly increases after annealing at 400 ℃. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.