As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribut...As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribution Clustering Hidden Markov Model (SDCHMM), derived from the Continuous Density Hidden Markov Model (CDHMM), is introduced. With parameter tying, a new method to train SDCHMMs is described. Compared with the conventional training method, an SDCHMM recognizer trained by means of the new method achieves higher accuracy and speed. Experiment results show that the SDCHMM recognizer outperforms the CDHMM recognizer on speech recognition of Chinese digits.展开更多
Effects of shear rates on average cluster sizes (ACSs) and cluster size distributions (CSDs) in uni- and bi-systems of partly charged superfine nickel particles were investigated by Brownian dynamics, and clustering p...Effects of shear rates on average cluster sizes (ACSs) and cluster size distributions (CSDs) in uni- and bi-systems of partly charged superfine nickel particles were investigated by Brownian dynamics, and clustering properties in these systems were compared with those in non-polar systems. The results show that the ACSs in bi-polar systems are larger than those in the non-polar systems. In uni-polar systems the behavior of clustering property differs: at the lower ionic concentration (10%), repulsive force is not strong enough to break clusters, but may greatly weaken them. The clusters are eventually cracked into smaller ones only when concentration of uni-polar charged particles is large enough. In this work, the ionic concentration is 20%. The relationship between ACS and shear rates follows power law in a exponent range of 0.176-0.276. This range is in a good agreement with the range of experimental data, but it is biased towards the lower limit slightly.展开更多
Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically...Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient.展开更多
Clustering is one of the recently challenging tasks since there is an ever.growing amount of data in scientific research and commercial applications. High quality and fast document clustering algorithms are in great d...Clustering is one of the recently challenging tasks since there is an ever.growing amount of data in scientific research and commercial applications. High quality and fast document clustering algorithms are in great demand to deal with large volume of data. The computational requirements for bringing such growing amount data to a central site for clustering are complex. The proposed algorithm uses optimal centroids for K.Means clustering based on Particle Swarm Optimization(PSO).PSO is used to take advantage of its global search ability to provide optimal centroids which aids in generating more compact clusters with improved accuracy. This proposed methodology utilizes Hadoop and Map Reduce framework which provides distributed storage and analysis to support data intensive distributed applications. Experiments were performed on Reuter's and RCV1 document dataset which shows an improvement in accuracy with reduced execution time.展开更多
This paper investigated average cluster sizes (ACS) and cluster size distributions (CSD) at different shear rates by Brownian dynamics in non-, bi-, and uni-polar systems with partly charged superfine particles, T...This paper investigated average cluster sizes (ACS) and cluster size distributions (CSD) at different shear rates by Brownian dynamics in non-, bi-, and uni-polar systems with partly charged superfine particles, The investigation indicates that clusters in non- polar systems are the weakest and easiest to be damaged by increasing shear stresses; charged particles play important and different roles: in bi-polar system, it intends to strengthen clusters to some extent provided that the sign-like ions homogeneously arranged; in uni-polar system charged particles cracked the clusters into smaller ones, but the small clusters are strong to stand with larger shear stress. The relationship between ACS and shear rates follows power law with exponents in a range 0.18-0.28, these values are in a good agreement with experiment range but at the lower limit compared with other systems of non-metallic cluster particles.展开更多
In this paper,we investigate the spectrum sensing performance of a distributed satellite clusters(DSC)under perturbation,aiming to enhance the sensing ability of weak signals in the coexistence of strong and weak sign...In this paper,we investigate the spectrum sensing performance of a distributed satellite clusters(DSC)under perturbation,aiming to enhance the sensing ability of weak signals in the coexistence of strong and weak signals.Specifically,we propose a cooperative beamforming(BF)algorithm though random antenna array theory to fit the location characteristic of DSC and derive the average far-field beam pattern under perturbation.Then,a constrained optimization problem with maximizing the signal to interference plus noise ratio(SINR)is modeled to obtain the BF weight vectors,and an approximate expression of SINR is presented in the presence of the mismatch of signal steering vector.Finally,we derive the closedform expression of the detection probability for the considered DSC over Shadowed-Rician fading channels.Simulation results are provided to validate our theoretical analysis and to characterize the impact of various parameters on the system performance.展开更多
In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Us...In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Users(PUs)interfer-ence.The Cognitive Radio(CR)system is based on the Adaptive Swarm Distributed Intelligent based Clustering algorithm(ASDIC)that shows better spectrum sensing among group of multiusers in terms of sensing error,power sav-ing,and convergence time.In this research paper,the proposed ASDIC algorithm develops better energy efficient distributed cluster based sensing with the optimal number of clusters on their connectivity.In this research,multiple random Sec-ondary Users(SUs),and PUs are considered for implementation.Hence,the pro-posed ASDIC algorithm improved the convergence speed by combining the multi-users clustered communication compared to the existing optimization algo-rithms.Experimental results showed that the proposed ASDIC algorithm reduced the node power of 9.646%compared to the existing algorithms.Similarly,ASDIC algorithm reduced 24.23%of SUs average node power compared to the existing algorithms.Probability of detection is higher by reducing the Signal-to-Noise Ratio(SNR)to 2 dB values.The proposed ASDIC delivers low false alarm rate compared to other existing optimization algorithms in the primary detection.Simulation results showed that the proposed ASDIC algorithm effectively solves the multimodal optimization problems and maximizes the performance of net-work capacity.展开更多
As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this...As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this paper,a cooperative security monitoring mechanism aided by multiple slave cluster heads(SCHs)is proposed to keep track of the data security of a CH.By designing a low complexity“equilateral triangle algorithm(ETA)”,the optimal SCHs(named as ETA-based multiple SCHs)are selected from the candidate SCHs so as to improve the dispersion and coverage of SCHs and achieve largescale data security monitoring.In addition,by analyzing the entire monitoring process,the close form expression of the probability of the failure attack identification for the SCHs with respect to the probability of attack launched by ordinary nodes is deduced.The simulation results show that the proposed optimal ETA-based multiple SCH cooperation scheme has lower probability of the failure attack identification than that of the existing schemes.In addition,the numerical simulation results are consistent with the theoretical analysis results,thus verifying the effectiveness of the proposed scheme.展开更多
Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where t...Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where the nodes observe the mobility model of human society.It is a kind of Delay Tolerant Networks(DTNs)that gives a description to circulate information among the network nodes by the way of taking the benefit of transferring nodes from one area to another.Considering its inception,there are several schemes for message routing in the infrastructure-less environment in which human mobility is only the best manner to exchange information.For routing messages,PSN uses different techniques such asDistributed Expectation-Based Spatio-Temporal(DEBT)Epidemic(DEBTE),DEBT Cluster(DEBTC),and DEBT Tree(DEBTT).Understanding on how the network environment is affected for these routing strategies are the main motivation of this research.In this paper,we have investigated the impact of network nodes,the message copies per transmission,and the overall carrying out of these routing protocols.ONE simulator was used to analyze those techniques on the basis of delivery,overhead,and latency.The result of this task demonstrates that for a particular simulation setting,DEBTE is the best PSN routing technique among all,against DEBTC and DEBTT.展开更多
To improve the energy efficiency and load-balance in large-scale multi-agent systems, a large-scale distributed cluster algorithm is proposed. At first, a parameter describing the spatial distribution of agents is des...To improve the energy efficiency and load-balance in large-scale multi-agent systems, a large-scale distributed cluster algorithm is proposed. At first, a parameter describing the spatial distribution of agents is designed to assess the information spreading capability of an agent. Besides, a competition resolution mechanism is proposed to tackle the competition problem in large-scale multiagent systems. Thus, the proposed algorithm can balance the load, adjust the system network locally and dynamically, reduce system energy consumption. Finally, simulations are presented to demonstrate the superiority of the proposed algorithm.展开更多
This paper discusses a distributed design for clustering based on the K-means algorithm in a switching multi-agent network, for the case when data are decentralized stored and unavailable to all agents. The authors pr...This paper discusses a distributed design for clustering based on the K-means algorithm in a switching multi-agent network, for the case when data are decentralized stored and unavailable to all agents. The authors propose a consensus-based algorithm in distributed case, that is, the double- clock consensus-based K-means algorithm (DCKA). With mild connectivity conditions, the authors show convergence of DCKA to guarantee a distributed solution to the clustering problem, even though the network topology is time-varying. Moreover, the authors provide experimental results on vari- ous clustering datasets to illustrate the effectiveness of the fully distributed algorithm DCKA, whose performance may be better than that of the centralized K-means algorithm.展开更多
Focusing on its main requirements and challenges and by analyzing the characteristics of different space platforms,an overall architecture for space information networks is proposed based on national strategic plannin...Focusing on its main requirements and challenges and by analyzing the characteristics of different space platforms,an overall architecture for space information networks is proposed based on national strategic planning and the present development status of associated technologies.Furthermore,the core scientific problems that need to be solved are expounded.In addition,the primary considerations and a preliminary integrated demonstration environment for verification of key technologies are presented.展开更多
Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT...Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT)and participate in various tasks. WSNs play an important role monitoring and reporting environment information and collecting surrounding context. In this paper we consider a WSN deployed for an application such as environment monitoring, and a mobile sink which acts as the gateway between the Internet and the WSN. Data gathering is a challenging problem in WSNs and in the IoT because the information has to be available quickly and effectively without delays and redundancies. In this paper we propose several distributed algorithms for composite event detection and reporting to a mobile sink. Once data is collected by the sink, it can be shared using the IoT infrastructure. We analyze the performance of our algorithms using WSNet simulator, which is specially designed for event-based WSNs. We measure various metrics such as average residual energy, percentage of composite events processed successfully at the sink, and the average number of hops to reach the sink.展开更多
基金Supported by the National Natural Science Foundation of China (No.60172048)
文摘As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribution Clustering Hidden Markov Model (SDCHMM), derived from the Continuous Density Hidden Markov Model (CDHMM), is introduced. With parameter tying, a new method to train SDCHMMs is described. Compared with the conventional training method, an SDCHMM recognizer trained by means of the new method achieves higher accuracy and speed. Experiment results show that the SDCHMM recognizer outperforms the CDHMM recognizer on speech recognition of Chinese digits.
基金Projects(50474037, 50874087) supported by the National Natural Science Foundation of ChinaProject (BK2006078) supported by the Natural Scientific Funds of Jiangsu Province,China
文摘Effects of shear rates on average cluster sizes (ACSs) and cluster size distributions (CSDs) in uni- and bi-systems of partly charged superfine nickel particles were investigated by Brownian dynamics, and clustering properties in these systems were compared with those in non-polar systems. The results show that the ACSs in bi-polar systems are larger than those in the non-polar systems. In uni-polar systems the behavior of clustering property differs: at the lower ionic concentration (10%), repulsive force is not strong enough to break clusters, but may greatly weaken them. The clusters are eventually cracked into smaller ones only when concentration of uni-polar charged particles is large enough. In this work, the ionic concentration is 20%. The relationship between ACS and shear rates follows power law in a exponent range of 0.176-0.276. This range is in a good agreement with the range of experimental data, but it is biased towards the lower limit slightly.
基金Funded by the National 973 Program of China (No.2003CB415205)the National Natural Science Foundation of China (No.40523005, No.60573183, No.60373019)the Open Research Fund Program of LIESMARS (No.WKL(04)0303).
文摘Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient.
文摘Clustering is one of the recently challenging tasks since there is an ever.growing amount of data in scientific research and commercial applications. High quality and fast document clustering algorithms are in great demand to deal with large volume of data. The computational requirements for bringing such growing amount data to a central site for clustering are complex. The proposed algorithm uses optimal centroids for K.Means clustering based on Particle Swarm Optimization(PSO).PSO is used to take advantage of its global search ability to provide optimal centroids which aids in generating more compact clusters with improved accuracy. This proposed methodology utilizes Hadoop and Map Reduce framework which provides distributed storage and analysis to support data intensive distributed applications. Experiments were performed on Reuter's and RCV1 document dataset which shows an improvement in accuracy with reduced execution time.
基金supported by the National Natural Science Foundation of China(No.50474037)The Natural Science Funds(No.KB2006078)in Jiangsu Province of China.
文摘This paper investigated average cluster sizes (ACS) and cluster size distributions (CSD) at different shear rates by Brownian dynamics in non-, bi-, and uni-polar systems with partly charged superfine particles, The investigation indicates that clusters in non- polar systems are the weakest and easiest to be damaged by increasing shear stresses; charged particles play important and different roles: in bi-polar system, it intends to strengthen clusters to some extent provided that the sign-like ions homogeneously arranged; in uni-polar system charged particles cracked the clusters into smaller ones, but the small clusters are strong to stand with larger shear stress. The relationship between ACS and shear rates follows power law with exponents in a range 0.18-0.28, these values are in a good agreement with experiment range but at the lower limit compared with other systems of non-metallic cluster particles.
基金partially supported by the National Science Foundation of China (No.91738201,U21A20450 and 62171234)the Jiangsu Province Basic Research Project (No. BK20192002)the postgraduate research & practice innovation program of jiangsu province under Grant KYCX20_0708
文摘In this paper,we investigate the spectrum sensing performance of a distributed satellite clusters(DSC)under perturbation,aiming to enhance the sensing ability of weak signals in the coexistence of strong and weak signals.Specifically,we propose a cooperative beamforming(BF)algorithm though random antenna array theory to fit the location characteristic of DSC and derive the average far-field beam pattern under perturbation.Then,a constrained optimization problem with maximizing the signal to interference plus noise ratio(SINR)is modeled to obtain the BF weight vectors,and an approximate expression of SINR is presented in the presence of the mismatch of signal steering vector.Finally,we derive the closedform expression of the detection probability for the considered DSC over Shadowed-Rician fading channels.Simulation results are provided to validate our theoretical analysis and to characterize the impact of various parameters on the system performance.
文摘In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Users(PUs)interfer-ence.The Cognitive Radio(CR)system is based on the Adaptive Swarm Distributed Intelligent based Clustering algorithm(ASDIC)that shows better spectrum sensing among group of multiusers in terms of sensing error,power sav-ing,and convergence time.In this research paper,the proposed ASDIC algorithm develops better energy efficient distributed cluster based sensing with the optimal number of clusters on their connectivity.In this research,multiple random Sec-ondary Users(SUs),and PUs are considered for implementation.Hence,the pro-posed ASDIC algorithm improved the convergence speed by combining the multi-users clustered communication compared to the existing optimization algo-rithms.Experimental results showed that the proposed ASDIC algorithm reduced the node power of 9.646%compared to the existing algorithms.Similarly,ASDIC algorithm reduced 24.23%of SUs average node power compared to the existing algorithms.Probability of detection is higher by reducing the Signal-to-Noise Ratio(SNR)to 2 dB values.The proposed ASDIC delivers low false alarm rate compared to other existing optimization algorithms in the primary detection.Simulation results showed that the proposed ASDIC algorithm effectively solves the multimodal optimization problems and maximizes the performance of net-work capacity.
基金supported in part by the Joint Fund of Science and Technology Department of Liaoning Province and State Key Laboratory of Robotics,China under Grant 2021-KF-22-08in part by the Basic Research Program of Science and Technology of Shenzhen,China under Grant JCYJ20190809161805508in part by the National Natural Science Foundation of China under Grant 62271423 and Grant 41976178.
文摘As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this paper,a cooperative security monitoring mechanism aided by multiple slave cluster heads(SCHs)is proposed to keep track of the data security of a CH.By designing a low complexity“equilateral triangle algorithm(ETA)”,the optimal SCHs(named as ETA-based multiple SCHs)are selected from the candidate SCHs so as to improve the dispersion and coverage of SCHs and achieve largescale data security monitoring.In addition,by analyzing the entire monitoring process,the close form expression of the probability of the failure attack identification for the SCHs with respect to the probability of attack launched by ordinary nodes is deduced.The simulation results show that the proposed optimal ETA-based multiple SCH cooperation scheme has lower probability of the failure attack identification than that of the existing schemes.In addition,the numerical simulation results are consistent with the theoretical analysis results,thus verifying the effectiveness of the proposed scheme.
基金UPNM Grant J0117-UPNM/2016/GPJP/5/ICT/2.The authors fully acknowledged Ministry of Higher Education(MOHE)and National Defence University of Malaysia for the approved fund which makes this important research viable and effective.The authors also would like to thank University Grant Commission of Bangladesh,Comilla University for the financial support.
文摘Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where the nodes observe the mobility model of human society.It is a kind of Delay Tolerant Networks(DTNs)that gives a description to circulate information among the network nodes by the way of taking the benefit of transferring nodes from one area to another.Considering its inception,there are several schemes for message routing in the infrastructure-less environment in which human mobility is only the best manner to exchange information.For routing messages,PSN uses different techniques such asDistributed Expectation-Based Spatio-Temporal(DEBT)Epidemic(DEBTE),DEBT Cluster(DEBTC),and DEBT Tree(DEBTT).Understanding on how the network environment is affected for these routing strategies are the main motivation of this research.In this paper,we have investigated the impact of network nodes,the message copies per transmission,and the overall carrying out of these routing protocols.ONE simulator was used to analyze those techniques on the basis of delivery,overhead,and latency.The result of this task demonstrates that for a particular simulation setting,DEBTE is the best PSN routing technique among all,against DEBTC and DEBTT.
基金supported by Projects of Major International(Regional)Joint Research Program NSFC under Grant No.61720106011the National Natural Science Foundation of China under Grant Nos.61573062,61621063,and 61673058+3 种基金Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1208Beijing Education Committee Cooperation Building Foundation Project under Grant No.2017CX02005Beijing Advanced Innovation Center for Intelligent Robots and Systems(Beijing Institute of Technology)Key Laboratory of Biomimetic Robots and Systems(Beijing Institute of Technology),Ministry of Education,Beijing,China
文摘To improve the energy efficiency and load-balance in large-scale multi-agent systems, a large-scale distributed cluster algorithm is proposed. At first, a parameter describing the spatial distribution of agents is designed to assess the information spreading capability of an agent. Besides, a competition resolution mechanism is proposed to tackle the competition problem in large-scale multiagent systems. Thus, the proposed algorithm can balance the load, adjust the system network locally and dynamically, reduce system energy consumption. Finally, simulations are presented to demonstrate the superiority of the proposed algorithm.
基金supported by the National Key Research and Development Program of China under Grant No.2016YFB0901902the National Natural Science Foundation of China under Grant Nos.61573344,61333001,61733018,and 61374168
文摘This paper discusses a distributed design for clustering based on the K-means algorithm in a switching multi-agent network, for the case when data are decentralized stored and unavailable to all agents. The authors propose a consensus-based algorithm in distributed case, that is, the double- clock consensus-based K-means algorithm (DCKA). With mild connectivity conditions, the authors show convergence of DCKA to guarantee a distributed solution to the clustering problem, even though the network topology is time-varying. Moreover, the authors provide experimental results on vari- ous clustering datasets to illustrate the effectiveness of the fully distributed algorithm DCKA, whose performance may be better than that of the centralized K-means algorithm.
基金supported by the National Natural Science Foundation of China(Nos.61231011,61671478)。
文摘Focusing on its main requirements and challenges and by analyzing the characteristics of different space platforms,an overall architecture for space information networks is proposed based on national strategic planning and the present development status of associated technologies.Furthermore,the core scientific problems that need to be solved are expounded.In addition,the primary considerations and a preliminary integrated demonstration environment for verification of key technologies are presented.
文摘Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT)and participate in various tasks. WSNs play an important role monitoring and reporting environment information and collecting surrounding context. In this paper we consider a WSN deployed for an application such as environment monitoring, and a mobile sink which acts as the gateway between the Internet and the WSN. Data gathering is a challenging problem in WSNs and in the IoT because the information has to be available quickly and effectively without delays and redundancies. In this paper we propose several distributed algorithms for composite event detection and reporting to a mobile sink. Once data is collected by the sink, it can be shared using the IoT infrastructure. We analyze the performance of our algorithms using WSNet simulator, which is specially designed for event-based WSNs. We measure various metrics such as average residual energy, percentage of composite events processed successfully at the sink, and the average number of hops to reach the sink.