A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u...A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.展开更多
Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for ga...Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%.展开更多
Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate des...Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate design by concentrating computational assets,such as preservation and server infrastructure,in a limited number of large-scale worldwide data facilities.Optimizing the deployment of virtual machines(VMs)is crucial in this scenario to ensure system dependability,performance,and minimal latency.A significant barrier in the present scenario is the load distribution,particularly when striving for improved energy consumption in a hypothetical grid computing framework.This design employs load-balancing techniques to allocate different user workloads across several virtual machines.To address this challenge,we propose using the twin-fold moth flame technique,which serves as a very effective optimization technique.Developers intentionally designed the twin-fold moth flame method to consider various restrictions,including energy efficiency,lifespan analysis,and resource expenditures.It provides a thorough approach to evaluating total costs in the cloud computing environment.When assessing the efficacy of our suggested strategy,the study will analyze significant metrics such as energy efficiency,lifespan analysis,and resource expenditures.This investigation aims to enhance cloud computing techniques by developing a new optimization algorithm that considers multiple factors for effective virtual machine placement and load balancing.The proposed work demonstrates notable improvements of 12.15%,10.68%,8.70%,13.29%,18.46%,and 33.39%for 40 count data of nodes using the artificial bee colony-bat algorithm,ant colony optimization,crow search algorithm,krill herd,whale optimization genetic algorithm,and improved Lévy-based whale optimization algorithm,respectively.展开更多
With the continuous use of cloud and distributed computing, the threats associated with data and information technology (IT) in such an environment have also increased. Thus, data security and data leakage prevention ...With the continuous use of cloud and distributed computing, the threats associated with data and information technology (IT) in such an environment have also increased. Thus, data security and data leakage prevention have become important in a distributed environment. In this aspect, mobile agent-based systems are one of the latest mechanisms to identify and prevent the intrusion and leakage of the data across the network. Thus, to tackle one or more of the several challenges on Mobile Agent-Based Information Leakage Prevention, this paper aim at providing a comprehensive, detailed, and systematic study of the Distribution Model for Mobile Agent-Based Information Leakage Prevention. This paper involves the review of papers selected from the journals which are published in 2009 and 2019. The critical review is presented for the distributed mobile agent-based intrusion detection systems in terms of their design analysis, techniques, and shortcomings. Initially, eighty-five papers were identified, but a paper selection process reduced the number of papers to thirteen important reviews.展开更多
Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for tradition...Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for traditional standalone storage systems,such as I/O and file system capacity.However,the existing distributed storage system does not consider where data is consumed and is more focused on data dissemination and optimizing the lookup cost of data location.And this leads to system performance degradation due to low locality occurring in a Wide Area Network(WAN)environment with high network latency.This problem hinders deploying distributed storage systems to multiple data centers over WAN.It lowers the scalability of distributed storage systems to accommodate data storage needs.This paper proposes a method for distributing data in a WAN environment considering network latency and data locality to solve this problem and increase overall system performance.The proposed distributed storage method monitors data utilization and locality to classify data temperature as hot,warm,and cold.With assigned data temperature,the proposed algorithm adaptively selects the appropriate data center and places data accordingly to overcome the excess latency from the WAN environment,leading to overall system performance degradation.This paper also conducts simulations to evaluate the proposed and existing distributed storage methods.The result shows that our proposed method reduced latency by 38%compared to the existing method.Therefore,the proposed method in this paper can be used in large-scale distributed storage systems over a WAN environment to improve latency and performance compared to existing methods,such as consistent hashing.展开更多
Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficie...Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficiency of medical diagnosis.And with the wide application of the Internet of Things and Big Data in the medical field,medical Big Data is increasing in geometric magnitude resulting in cloud service overload,insufficient storage,communication delay,and network congestion.In order to solve these medical and network problems,a medical big-data-oriented fog computing architec-ture and BP algorithm application are proposed,and its structural advantages and characteristics are studied.This architecture enables the medical Big Data generated by medical edge devices and the existing data in the cloud service center to calculate,compare and analyze the fog node through the Internet of Things.The diagnosis results are designed to reduce the business processing delay and improve the diagnosis effect.Considering the weak computing of each edge device,the artificial intelligence BP neural network algorithm is used in the core computing model of the medical diagnosis system to improve the system computing power,enhance the medical intelligence-aided decision-making,and improve the clinical diagnosis and treatment efficiency.In the application process,combined with the characteristics of medical Big Data technology,through fog architecture design and Big Data technology integration,we could research the processing and analysis of heterogeneous data of the medical diagnosis system in the context of the Internet of Things.The results are promising:The medical platform network is smooth,the data storage space is sufficient,the data processing and analysis speed is fast,the diagnosis effect is remarkable,and it is a good assistant to doctors’treatment effect.It not only effectively solves the problem of low clinical diagnosis,treatment efficiency and quality,but also reduces the waiting time of patients,effectively solves the contradiction between doctors and patients,and improves the medical service quality and management level.展开更多
This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system model...This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system modelled on Anylogic version 8.8.4. Anylogic is a multi-paradigm simulation tool that supports three main simulation methodologies: discrete event simulation, agent-based modeling, and system dynamics modeling. The system is used to evaluate the implication of stochastic time-based vehicle variables on the general efficiency of road use. Road use efficiency as reflected in this model is based on the percentage of entry vehicles to exit the model within a one-hour simulation period. The study deduced that for the model under review, an increase in entry point time delay has a domineering influence on the efficiency of road use far beyond any other consideration. This study therefore presents a novel approach that leverages Discrete Events Simulation to facilitate efficient road management with a focus on optimum road use efficiency. The study also determined that the inclusion of appropriate random parameters to reflect road use activities at critical event points in a simulation can help in the effective representation of authentic traffic models. The Anylogic simulation software leverages the Classic DEVS and Parallel DEVS formalisms to achieve these objectives.展开更多
An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advan...An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques.展开更多
The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose...The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose a multi-objective optimization framework based on cloud services and a cloud distribution system.Real-time data from manufacturing procedures are first temporarily stored in a local database,and then transferred to the relational database in the cloud.Next,a distribution system with elastic compute power is set up for the optimization framework.Finally,a multi-objective optimization model based on deep learning and an evolutionary algorithm is proposed to optimize several conflicting goals of the blast furnace ironmaking process.With the application of this optimization service in a cloud factory,iron production was found to increase by 83.91 t∙d^(-1),the coke ratio decreased 13.50 kg∙t^(-1),and the silicon content decreased by an average of 0.047%.展开更多
The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this pape...The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.展开更多
In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In orde...In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In order to improve the fault tolerance rate,a novel public blockchain consensus mechanism that applies a distributed computing architecture in a public network is proposed.Redundant calculation of blockchain ensures the credibility of the results;and the transactions with calculation results of a task are stored distributed in sequence in Directed Acyclic Graphs(DAG).The transactions issued by nodes are connected to form a net.The net can quickly provide node reputation evaluation that does not rely on third parties.Simulations show that our proposed blockchain has the following advantages:1.The task processing speed of the blockchain can be close to that of the fastest node in the entire blockchain;2.When the tasks’arrival time intervals and demanded working nodes(WNs)meet certain conditions,the network can tolerate more than 50%of malicious devices;3.No matter the number of nodes in the blockchain is increased or reduced,the network can keep robustness by adjusting the task’s arrival time interval and demanded WNs.展开更多
Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins.With the rapid development of high-throughput genomic technologies,massive protein-protein interacti...Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins.With the rapid development of high-throughput genomic technologies,massive protein-protein interaction(PPI)data have been generated,making it very difficult to analyze them efficiently.To address this problem,this paper presents a distributed framework by reimplementing one of state-of-the-art algorithms,i.e.,CoFex,using MapReduce.To do so,an in-depth analysis of its limitations is conducted from the perspectives of efficiency and memory consumption when applying it for large-scale PPI data analysis and prediction.Respective solutions are then devised to overcome these limitations.In particular,we adopt a novel tree-based data structure to reduce the heavy memory consumption caused by the huge sequence information of proteins.After that,its procedure is modified by following the MapReduce framework to take the prediction task distributively.A series of extensive experiments have been conducted to evaluate the performance of our framework in terms of both efficiency and accuracy.Experimental results well demonstrate that the proposed framework can considerably improve its computational efficiency by more than two orders of magnitude while retaining the same high accuracy.展开更多
Landslide inventory plays an important role in recording landslide events and showing their temporal-spatial distribution. This paper describes the development, visualization, and analysis of a China's Landslide I...Landslide inventory plays an important role in recording landslide events and showing their temporal-spatial distribution. This paper describes the development, visualization, and analysis of a China's Landslide Inventory Database(Cs LID) by utilizing Google's public cloud computing platform. Firstly, Cs LID(Landslide Inventory Database) compiles a total of 1221 historical landslide events spanning the years 1949-2011 from relevant data sources. Secondly, the Cs LID is further broken down into six zones for characterizing landslide cause-effect, spatiotemporal distribution, fatalities, and socioeconomic impacts based on the geological environment and terrain. The results show that among all the six zones, zone V, located in Qinba and Southwest Mountainous Area is the most active landslide hotspot with the highest landslide hazard in China. Additionally, the Google public cloud computing platform enables the Cs LID to be easily accessible, visually interactive, and with the capability of allowing new data input to dynamically augment the database. This work developed a cyber-landslide inventory and used it to analyze the landslide temporal-spatial distribution in China.展开更多
To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the ...To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode.展开更多
Mobile agents provide a new method for the distributed computation. This paper presents the advantages of using mobile agents in a distributed virtual environment (DVE) system, and describes the architecture of hetero...Mobile agents provide a new method for the distributed computation. This paper presents the advantages of using mobile agents in a distributed virtual environment (DVE) system, and describes the architecture of heterogeneous computer's distributed virtual environment system (HCWES) designed to populate some mobile agents as well as stationary agents. Finally, the paper introduces how heterogeneous computer network communication is to be realized.展开更多
Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were...Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were addressed in the open literature. One of WDC key challenges is the impact of wireless channel quality on the load of distributed computations. Therefore, this research investigates the wireless channel impact on WDC performance when the tatter is applied to spectrum sensing in cognitive radio (CR) technology. However, a trade- off is found between accuracy and computational complexity in spectrum sensing approaches. Increasing these approaches accuracy is accompanied by an increase in computational complexity. This results in greater power consumption and processing time. A novel WDC scheme for cyclostationary feature detection spectrum sensing approach is proposed in this paper and thoroughly investigated. The benefits of the proposed scheme are firstly presented. Then, the impact of the wireless channel of the proposed scheme is addressed considering two scenarios. In the first scenario, workload matrices are distributed over the wireless channel展开更多
This paper designs and develops a framework on a distributed computing platform for massive multi-source spatial data using a column-oriented database(HBase).This platform consists of four layers including ETL(extract...This paper designs and develops a framework on a distributed computing platform for massive multi-source spatial data using a column-oriented database(HBase).This platform consists of four layers including ETL(extraction transformation loading) tier,data processing tier,data storage tier and data display tier,achieving long-term store,real-time analysis and inquiry for massive data.Finally,a real dataset cluster is simulated,which are made up of 39 nodes including 2 master nodes and 37 data nodes,and performing function tests of data importing module and real-time query module,and performance tests of HDFS's I/O,the MapReduce cluster,batch-loading and real-time query of massive data.The test results indicate that this platform achieves high performance in terms of response time and linear scalability.展开更多
A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trach...A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow character- istics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical mea- sures, experimental and computational results in the litera- ture. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distrib- uted on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distrib- uted on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.展开更多
Given the fast growth of intelligent devices, it is expected that a large number of high-stakes artificial intelligence (AI) applications, e. g., drones, autonomous cars, and tac?tile robots, will be deployed at the e...Given the fast growth of intelligent devices, it is expected that a large number of high-stakes artificial intelligence (AI) applications, e. g., drones, autonomous cars, and tac?tile robots, will be deployed at the edge of wireless networks in the near future. Therefore, the intelligent communication networks will be designed to leverage advanced wireless tech?niques and edge computing technologies to support AI-enabled applications at various end devices with limited communication, computation, hardware and energy resources. In this article, we present the principles of efficient deployment of model inference at network edge to provide low-latency and energy-efficient AI services. This includes the wireless distribut?ed computing framework for low-latency device distributed model inference as well as the wireless cooperative transmission strategy for energy-efficient edge cooperative model infer?ence. The communication efficiency of edge inference systems is further improved by build?ing up a smart radio propagation environment via intelligent reflecting surface.展开更多
The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i...The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.展开更多
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900603)the National Natural Science Foundation of China(61831008).
文摘A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.
基金the Natural Science Foundation of Ningxia Province(No.2021AAC03230).
文摘Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%.
基金This work was supported in part by the Natural Science Foundation of the Education Department of Henan Province(Grant 22A520025)the National Natural Science Foundation of China(Grant 61975053)the National Key Research and Development of Quality Information Control Technology for Multi-Modal Grain Transportation Efficient Connection(2022YFD2100202).
文摘Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate design by concentrating computational assets,such as preservation and server infrastructure,in a limited number of large-scale worldwide data facilities.Optimizing the deployment of virtual machines(VMs)is crucial in this scenario to ensure system dependability,performance,and minimal latency.A significant barrier in the present scenario is the load distribution,particularly when striving for improved energy consumption in a hypothetical grid computing framework.This design employs load-balancing techniques to allocate different user workloads across several virtual machines.To address this challenge,we propose using the twin-fold moth flame technique,which serves as a very effective optimization technique.Developers intentionally designed the twin-fold moth flame method to consider various restrictions,including energy efficiency,lifespan analysis,and resource expenditures.It provides a thorough approach to evaluating total costs in the cloud computing environment.When assessing the efficacy of our suggested strategy,the study will analyze significant metrics such as energy efficiency,lifespan analysis,and resource expenditures.This investigation aims to enhance cloud computing techniques by developing a new optimization algorithm that considers multiple factors for effective virtual machine placement and load balancing.The proposed work demonstrates notable improvements of 12.15%,10.68%,8.70%,13.29%,18.46%,and 33.39%for 40 count data of nodes using the artificial bee colony-bat algorithm,ant colony optimization,crow search algorithm,krill herd,whale optimization genetic algorithm,and improved Lévy-based whale optimization algorithm,respectively.
文摘With the continuous use of cloud and distributed computing, the threats associated with data and information technology (IT) in such an environment have also increased. Thus, data security and data leakage prevention have become important in a distributed environment. In this aspect, mobile agent-based systems are one of the latest mechanisms to identify and prevent the intrusion and leakage of the data across the network. Thus, to tackle one or more of the several challenges on Mobile Agent-Based Information Leakage Prevention, this paper aim at providing a comprehensive, detailed, and systematic study of the Distribution Model for Mobile Agent-Based Information Leakage Prevention. This paper involves the review of papers selected from the journals which are published in 2009 and 2019. The critical review is presented for the distributed mobile agent-based intrusion detection systems in terms of their design analysis, techniques, and shortcomings. Initially, eighty-five papers were identified, but a paper selection process reduced the number of papers to thirteen important reviews.
基金This research was supported by the Chung-Ang University Graduate Research Scholarship in 2021.This study was carried out with the support of‘R&D Program for Forest Science Technology(Project No.2021338C10-2223-CD02)’provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for traditional standalone storage systems,such as I/O and file system capacity.However,the existing distributed storage system does not consider where data is consumed and is more focused on data dissemination and optimizing the lookup cost of data location.And this leads to system performance degradation due to low locality occurring in a Wide Area Network(WAN)environment with high network latency.This problem hinders deploying distributed storage systems to multiple data centers over WAN.It lowers the scalability of distributed storage systems to accommodate data storage needs.This paper proposes a method for distributing data in a WAN environment considering network latency and data locality to solve this problem and increase overall system performance.The proposed distributed storage method monitors data utilization and locality to classify data temperature as hot,warm,and cold.With assigned data temperature,the proposed algorithm adaptively selects the appropriate data center and places data accordingly to overcome the excess latency from the WAN environment,leading to overall system performance degradation.This paper also conducts simulations to evaluate the proposed and existing distributed storage methods.The result shows that our proposed method reduced latency by 38%compared to the existing method.Therefore,the proposed method in this paper can be used in large-scale distributed storage systems over a WAN environment to improve latency and performance compared to existing methods,such as consistent hashing.
基金supported by 2020 Foshan Science and Technology Project(Numbering:2020001005356),Baoling Qin received the grant.
文摘Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficiency of medical diagnosis.And with the wide application of the Internet of Things and Big Data in the medical field,medical Big Data is increasing in geometric magnitude resulting in cloud service overload,insufficient storage,communication delay,and network congestion.In order to solve these medical and network problems,a medical big-data-oriented fog computing architec-ture and BP algorithm application are proposed,and its structural advantages and characteristics are studied.This architecture enables the medical Big Data generated by medical edge devices and the existing data in the cloud service center to calculate,compare and analyze the fog node through the Internet of Things.The diagnosis results are designed to reduce the business processing delay and improve the diagnosis effect.Considering the weak computing of each edge device,the artificial intelligence BP neural network algorithm is used in the core computing model of the medical diagnosis system to improve the system computing power,enhance the medical intelligence-aided decision-making,and improve the clinical diagnosis and treatment efficiency.In the application process,combined with the characteristics of medical Big Data technology,through fog architecture design and Big Data technology integration,we could research the processing and analysis of heterogeneous data of the medical diagnosis system in the context of the Internet of Things.The results are promising:The medical platform network is smooth,the data storage space is sufficient,the data processing and analysis speed is fast,the diagnosis effect is remarkable,and it is a good assistant to doctors’treatment effect.It not only effectively solves the problem of low clinical diagnosis,treatment efficiency and quality,but also reduces the waiting time of patients,effectively solves the contradiction between doctors and patients,and improves the medical service quality and management level.
文摘This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system modelled on Anylogic version 8.8.4. Anylogic is a multi-paradigm simulation tool that supports three main simulation methodologies: discrete event simulation, agent-based modeling, and system dynamics modeling. The system is used to evaluate the implication of stochastic time-based vehicle variables on the general efficiency of road use. Road use efficiency as reflected in this model is based on the percentage of entry vehicles to exit the model within a one-hour simulation period. The study deduced that for the model under review, an increase in entry point time delay has a domineering influence on the efficiency of road use far beyond any other consideration. This study therefore presents a novel approach that leverages Discrete Events Simulation to facilitate efficient road management with a focus on optimum road use efficiency. The study also determined that the inclusion of appropriate random parameters to reflect road use activities at critical event points in a simulation can help in the effective representation of authentic traffic models. The Anylogic simulation software leverages the Classic DEVS and Parallel DEVS formalisms to achieve these objectives.
文摘An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques.
基金This work was supported in part by the National Natural Science Foundation of China(61933015).
文摘The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose a multi-objective optimization framework based on cloud services and a cloud distribution system.Real-time data from manufacturing procedures are first temporarily stored in a local database,and then transferred to the relational database in the cloud.Next,a distribution system with elastic compute power is set up for the optimization framework.Finally,a multi-objective optimization model based on deep learning and an evolutionary algorithm is proposed to optimize several conflicting goals of the blast furnace ironmaking process.With the application of this optimization service in a cloud factory,iron production was found to increase by 83.91 t∙d^(-1),the coke ratio decreased 13.50 kg∙t^(-1),and the silicon content decreased by an average of 0.047%.
基金supported in part by the National Natural Science Foundation of China under Grant No.61072061the National Science and Technology Major Projects under Grant No.2012ZX03002008the Fundamental Research Funds for the Central Universities under Grant No.2012RC0121
文摘The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.
基金funded in part by the National Natural Science Foundation of China (Grant no. 61772352, 62172061, 61871422)National Key Research and Development Project (Grants nos. 2020YFB1711800 and 2020YFB1707900)+2 种基金the Science and Technology Project of Sichuan Province (Grants no. 2021YFG0152, 2021YFG0025, 2020YFG0479, 2020YFG0322, 2020GFW035, 2020GFW033, 2020YFH0071)the R&D Project of Chengdu City (Grant no. 2019-YF05-01790-GX)the Central Universities of Southwest Minzu University (Grants no. ZYN2022032)
文摘In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In order to improve the fault tolerance rate,a novel public blockchain consensus mechanism that applies a distributed computing architecture in a public network is proposed.Redundant calculation of blockchain ensures the credibility of the results;and the transactions with calculation results of a task are stored distributed in sequence in Directed Acyclic Graphs(DAG).The transactions issued by nodes are connected to form a net.The net can quickly provide node reputation evaluation that does not rely on third parties.Simulations show that our proposed blockchain has the following advantages:1.The task processing speed of the blockchain can be close to that of the fastest node in the entire blockchain;2.When the tasks’arrival time intervals and demanded working nodes(WNs)meet certain conditions,the network can tolerate more than 50%of malicious devices;3.No matter the number of nodes in the blockchain is increased or reduced,the network can keep robustness by adjusting the task’s arrival time interval and demanded WNs.
基金This work was supported in part by the National Natural Science Foundation of China(61772493)the CAAI-Huawei MindSpore Open Fund(CAAIXSJLJJ-2020-004B)+4 种基金the Natural Science Foundation of Chongqing(China)(cstc2019jcyjjqX0013)Chongqing Research Program of Technology Innovation and Application(cstc2019jscx-fxydX0024,cstc2019jscx-fxydX0027,cstc2018jszx-cyzdX0041)Guangdong Province Universities and College Pearl River Scholar Funded Scheme(2019)the Pioneer Hundred Talents Program of Chinese Academy of Sciencesthe Deanship of Scientific Research(DSR)at King Abdulaziz University(G-21-135-38).
文摘Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins.With the rapid development of high-throughput genomic technologies,massive protein-protein interaction(PPI)data have been generated,making it very difficult to analyze them efficiently.To address this problem,this paper presents a distributed framework by reimplementing one of state-of-the-art algorithms,i.e.,CoFex,using MapReduce.To do so,an in-depth analysis of its limitations is conducted from the perspectives of efficiency and memory consumption when applying it for large-scale PPI data analysis and prediction.Respective solutions are then devised to overcome these limitations.In particular,we adopt a novel tree-based data structure to reduce the heavy memory consumption caused by the huge sequence information of proteins.After that,its procedure is modified by following the MapReduce framework to take the prediction task distributively.A series of extensive experiments have been conducted to evaluate the performance of our framework in terms of both efficiency and accuracy.Experimental results well demonstrate that the proposed framework can considerably improve its computational efficiency by more than two orders of magnitude while retaining the same high accuracy.
基金funded by National Natural Science Foundation (Grant No. 41501458)National Natural Science Foundation (Grant No. 41201380)+4 种基金National Basic Research Program of China: (Grant No. 2013CB733204)Key Laboratory of Mining Spatial Information Technology of NASMG (KLM201309)Science Program of Shanghai Normal University (SK201525)sponsored by Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development, project 2013LASW-A09, project SKHL1310the Center of Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai, China
文摘Landslide inventory plays an important role in recording landslide events and showing their temporal-spatial distribution. This paper describes the development, visualization, and analysis of a China's Landslide Inventory Database(Cs LID) by utilizing Google's public cloud computing platform. Firstly, Cs LID(Landslide Inventory Database) compiles a total of 1221 historical landslide events spanning the years 1949-2011 from relevant data sources. Secondly, the Cs LID is further broken down into six zones for characterizing landslide cause-effect, spatiotemporal distribution, fatalities, and socioeconomic impacts based on the geological environment and terrain. The results show that among all the six zones, zone V, located in Qinba and Southwest Mountainous Area is the most active landslide hotspot with the highest landslide hazard in China. Additionally, the Google public cloud computing platform enables the Cs LID to be easily accessible, visually interactive, and with the capability of allowing new data input to dynamically augment the database. This work developed a cyber-landslide inventory and used it to analyze the landslide temporal-spatial distribution in China.
基金partly supported by National Key Basic Research Program of China(2016YFB1000100)partly supported by National Natural Science Foundation of China(NO.61402490)。
文摘To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode.
文摘Mobile agents provide a new method for the distributed computation. This paper presents the advantages of using mobile agents in a distributed virtual environment (DVE) system, and describes the architecture of heterogeneous computer's distributed virtual environment system (HCWES) designed to populate some mobile agents as well as stationary agents. Finally, the paper introduces how heterogeneous computer network communication is to be realized.
文摘Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were addressed in the open literature. One of WDC key challenges is the impact of wireless channel quality on the load of distributed computations. Therefore, this research investigates the wireless channel impact on WDC performance when the tatter is applied to spectrum sensing in cognitive radio (CR) technology. However, a trade- off is found between accuracy and computational complexity in spectrum sensing approaches. Increasing these approaches accuracy is accompanied by an increase in computational complexity. This results in greater power consumption and processing time. A novel WDC scheme for cyclostationary feature detection spectrum sensing approach is proposed in this paper and thoroughly investigated. The benefits of the proposed scheme are firstly presented. Then, the impact of the wireless channel of the proposed scheme is addressed considering two scenarios. In the first scenario, workload matrices are distributed over the wireless channel
基金Supported by the National Science and Technology Support Project(No.2012BAH01F02)from Ministry of Science and Technology of Chinathe Director Fund(No.IS201116002)from Institute of Seismology,CEA
文摘This paper designs and develops a framework on a distributed computing platform for massive multi-source spatial data using a column-oriented database(HBase).This platform consists of four layers including ETL(extraction transformation loading) tier,data processing tier,data storage tier and data display tier,achieving long-term store,real-time analysis and inquiry for massive data.Finally,a real dataset cluster is simulated,which are made up of 39 nodes including 2 master nodes and 37 data nodes,and performing function tests of data importing module and real-time query module,and performance tests of HDFS's I/O,the MapReduce cluster,batch-loading and real-time query of massive data.The test results indicate that this platform achieves high performance in terms of response time and linear scalability.
基金supported by the National Natural Science Foundation of China (10472025 10672036+1 种基金 10872043)Natural Science Foundation of Liaoning Province, China (20032109).
文摘A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow character- istics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical mea- sures, experimental and computational results in the litera- ture. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distrib- uted on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distrib- uted on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.
文摘Given the fast growth of intelligent devices, it is expected that a large number of high-stakes artificial intelligence (AI) applications, e. g., drones, autonomous cars, and tac?tile robots, will be deployed at the edge of wireless networks in the near future. Therefore, the intelligent communication networks will be designed to leverage advanced wireless tech?niques and edge computing technologies to support AI-enabled applications at various end devices with limited communication, computation, hardware and energy resources. In this article, we present the principles of efficient deployment of model inference at network edge to provide low-latency and energy-efficient AI services. This includes the wireless distribut?ed computing framework for low-latency device distributed model inference as well as the wireless cooperative transmission strategy for energy-efficient edge cooperative model infer?ence. The communication efficiency of edge inference systems is further improved by build?ing up a smart radio propagation environment via intelligent reflecting surface.
基金Projects(41604117,41204054)supported by the National Natural Science Foundation of ChinaProjects(20110490149,2015M580700)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2015zzts064)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(16B147)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.