Model I quasi-static nonlinear fracture of aluminum foams is analyzed by considering the effect of microscopic heterogeneity. Firstly, a continuum constitutive model is adopted to account for the plastic compressibili...Model I quasi-static nonlinear fracture of aluminum foams is analyzed by considering the effect of microscopic heterogeneity. Firstly, a continuum constitutive model is adopted to account for the plastic compressibility of the metallic foams. The yield strain modeled by a two- parameter Weibull-type function is adopted in the constitutive model. Then, a modified cohesive zone model is established to characterize the fracture behavior of aluminum foams with a cohesive zone ahead of the initial crack. The tensile traction versus local crack opening displacement relation is employed to describe the softening characteristics of the material. And a Weibull statistical model for peak bridging stress within the fracture process zone is used for considering microscopic heterogeneity of aluminum foams. Lastly, the influence of stochastic parameters on the curve of stress-strain is given. Numerical examples are given to illustrate the numerical model presented in this paper and the effects of Weibull parameters and material properties on J-integral are discussed.展开更多
基金supported by the National Basic Research Program of China(No.2006CB601205)the National Natural Science Foundation of China(No.10672027)the Key Project of National Natural Science Foundation of China(No.90816025)
文摘Model I quasi-static nonlinear fracture of aluminum foams is analyzed by considering the effect of microscopic heterogeneity. Firstly, a continuum constitutive model is adopted to account for the plastic compressibility of the metallic foams. The yield strain modeled by a two- parameter Weibull-type function is adopted in the constitutive model. Then, a modified cohesive zone model is established to characterize the fracture behavior of aluminum foams with a cohesive zone ahead of the initial crack. The tensile traction versus local crack opening displacement relation is employed to describe the softening characteristics of the material. And a Weibull statistical model for peak bridging stress within the fracture process zone is used for considering microscopic heterogeneity of aluminum foams. Lastly, the influence of stochastic parameters on the curve of stress-strain is given. Numerical examples are given to illustrate the numerical model presented in this paper and the effects of Weibull parameters and material properties on J-integral are discussed.