A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab...A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.展开更多
The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this...The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this problemby using its regulation and flexibility, and is considered to be an ideal platform.The traditional method of computing total transfer capability is difficult due tothe central integration of wind farms. As a result, the differential evolutionextreme learning machine is offered as a data mining approach for extractingoperating rules for the total transfer capability of tie-lines in wind-integratedpower systems. K-medoids clustering under the two-dimensional “wind power-load consumption” feature space is used to define representative operational scenarios initially. Then, using stochastic sampling and repetitive power flow, aknowledge base for total transfer capability operating rule mining is created.Then, a novel method is used to filter redundant characteristics and find featuresthat are closely associated to the total transfer capability in order to decrease theultra-high dimensionality of operational features. Finally, by feeding the trainingdata into the proposed algorithm, the total transfer capability operation rules arederived from the knowledge base. It can be seen that, the proposed algorithmcan optimize the system performance with good accuracy and generality, according to numerical data.展开更多
Recently,implementation of Battery Energy Storage(BES)with photovoltaic(PV)array in distribution networks is becoming very popular in overall the world.Integrating PV alone in distribution networks generates variable ...Recently,implementation of Battery Energy Storage(BES)with photovoltaic(PV)array in distribution networks is becoming very popular in overall the world.Integrating PV alone in distribution networks generates variable output power during 24-hours as it depends on variable natural source.PV can be able to generate constant output power during 24-hours by installing BES with it.Therefore,this paper presents a new application of a recent metaheuristic algorithm,called Slime Mould Algorithm(SMA),to determine the best size,and location of photovoltaic alone or with battery energy storage in the radial distribution system(RDS).This algorithm is modeled from the behavior of SMA in nature.During the optimization process,the total active power loss during 24-hours is used as an objective function considering the equality and inequality constraints.In addition,the presented function is based on the probabilistic for PV output and different types of system load.The candidate buses for integrating PV and BES in the distribution network are determined by the real power loss sensitivity factor(PLSF).IEEE 69-bus RDS with different types of loads is used as a test system.The effectiveness of SMA is validated by comparing its results with those obtained by other well-known optimization algorithms.展开更多
This paper proposes an evolutionary game-theoretic model of massive distributed renewable energy deployment in order to shed light on the self-organization sustainable developments of renewable energies in distributio...This paper proposes an evolutionary game-theoretic model of massive distributed renewable energy deployment in order to shed light on the self-organization sustainable developments of renewable energies in distribution networks towards low-carbon targets. Since neighboring buses can interact in terms of energy exchanges, the return matrices of individual buses in the evolutionary game are established based on profiles of loads and renewable energy generation. More specifically, an evolutionary strategy is proposed based on the return matrices for individual buses to determine whether or not to deploy renewable energies in the next round of the game. Then, a dynamic model is derived for analyzing the renewable energy penetration rate in the distribution network throughout the multi-round evolutionary game. In theory, this model can reveal the self-organization process of renewable energy deployment in the distribution network. With this model, the distribution network operator would be aided in designing the incentives for buses deploying renewable energies toward a pre-defined low-carbon target. Numerical results on an actual 141-bus system and a synthetic 2000-bus system have demonstrated the validity and efficiency of the proposed model.展开更多
文摘A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.
基金The authors extend their appreciation to the Deputy ship for the Research&innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IF-PSAU-2021/01/18432).
文摘The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this problemby using its regulation and flexibility, and is considered to be an ideal platform.The traditional method of computing total transfer capability is difficult due tothe central integration of wind farms. As a result, the differential evolutionextreme learning machine is offered as a data mining approach for extractingoperating rules for the total transfer capability of tie-lines in wind-integratedpower systems. K-medoids clustering under the two-dimensional “wind power-load consumption” feature space is used to define representative operational scenarios initially. Then, using stochastic sampling and repetitive power flow, aknowledge base for total transfer capability operating rule mining is created.Then, a novel method is used to filter redundant characteristics and find featuresthat are closely associated to the total transfer capability in order to decrease theultra-high dimensionality of operational features. Finally, by feeding the trainingdata into the proposed algorithm, the total transfer capability operation rules arederived from the knowledge base. It can be seen that, the proposed algorithmcan optimize the system performance with good accuracy and generality, according to numerical data.
基金This work was supported by“Development of Modular Green Substation and Operation Technology”of the Korea Electric Power Corporation(KEPCO).
文摘Recently,implementation of Battery Energy Storage(BES)with photovoltaic(PV)array in distribution networks is becoming very popular in overall the world.Integrating PV alone in distribution networks generates variable output power during 24-hours as it depends on variable natural source.PV can be able to generate constant output power during 24-hours by installing BES with it.Therefore,this paper presents a new application of a recent metaheuristic algorithm,called Slime Mould Algorithm(SMA),to determine the best size,and location of photovoltaic alone or with battery energy storage in the radial distribution system(RDS).This algorithm is modeled from the behavior of SMA in nature.During the optimization process,the total active power loss during 24-hours is used as an objective function considering the equality and inequality constraints.In addition,the presented function is based on the probabilistic for PV output and different types of system load.The candidate buses for integrating PV and BES in the distribution network are determined by the real power loss sensitivity factor(PLSF).IEEE 69-bus RDS with different types of loads is used as a test system.The effectiveness of SMA is validated by comparing its results with those obtained by other well-known optimization algorithms.
基金supported by National Natural Science Foundation of China (No. 52007164)Smart Gird Joint Funds of National Natural Science Foundation of China and State Grid Corporation of China (No. U2066601)。
文摘This paper proposes an evolutionary game-theoretic model of massive distributed renewable energy deployment in order to shed light on the self-organization sustainable developments of renewable energies in distribution networks towards low-carbon targets. Since neighboring buses can interact in terms of energy exchanges, the return matrices of individual buses in the evolutionary game are established based on profiles of loads and renewable energy generation. More specifically, an evolutionary strategy is proposed based on the return matrices for individual buses to determine whether or not to deploy renewable energies in the next round of the game. Then, a dynamic model is derived for analyzing the renewable energy penetration rate in the distribution network throughout the multi-round evolutionary game. In theory, this model can reveal the self-organization process of renewable energy deployment in the distribution network. With this model, the distribution network operator would be aided in designing the incentives for buses deploying renewable energies toward a pre-defined low-carbon target. Numerical results on an actual 141-bus system and a synthetic 2000-bus system have demonstrated the validity and efficiency of the proposed model.