The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/D...The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.展开更多
A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab...A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.展开更多
A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain struc...A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks.Secondly,considering the transaction needs between users and power suppliers in ADN,an energy request mechanism is proposed,and the optimization objective function is designed by integrating cost aware requests and storage aware requests.Finally,the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum power purchase cost of users and the maximum power sold by power suppliers.The experimental demonstration of the proposed method based on the experimental platform shows that when the number of participants is no more than 10,the transaction delay time is 0.2 s,and the transaction cost fluctuates at 200,000 yuan,which is better than other comparison methods.展开更多
With the implementation of China’s carbon-peaking and carbon-neutrality strategy,new energy will achieve leapfrog growth.Due to the good economics of distributed new-energy generation,it can not only save users’own ...With the implementation of China’s carbon-peaking and carbon-neutrality strategy,new energy will achieve leapfrog growth.Due to the good economics of distributed new-energy generation,it can not only save users’own investment,but also help to achieve local consumption of new energy.However,it will also bring about a series of incremental costs to the power grid.This paper first enumerates the concept,development status and scheduling mode of a distributed new-energy storage system.Based on the above,it establishes a new-energy power generation model and an energy storage system charging and discharging model,and proposes a global optimization scheduling model for a distributed new-energy storage system,considering the time-of-use electricity price and taking the lowest total operating cost of the distributed new-energy power generation system as the objective function.Finally,it proposes a distribution network incremental cost analysis model based on the penetration of distributed new energy.The calculation results show that the incremental cost of grid-connected distributed new energy is 1.0849,1.2585 and 1.3473 yuan/kWh,respectively,which indicates that the global dispatching model can optimize the power consumption structure of a distributed power generation system,and has the function of peak shaving and valley filling,but the incremental cost of the distribution network will also increase.展开更多
The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not onl...The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not only the technical improvement of the network, through its renewal with the introduction of the technological innovations in the equipment and circuit components as well as the optimal planning of the design and development of the network, but also requires the use of the methods and software tools to facilitate the operation process. The paper presents a strategy for power / energy saving which is replacement of the 6 kV voltage level with 20 kV voltage level. In this line, different urban distribution networks were analyzed using fuzzy techniques for load modeling.展开更多
Owing to potential regulation capacities from flexible resources in energy coupling,storage,and consumption links,central energy stations(CESs)can provide additional support to power distribution network(PDN)in case o...Owing to potential regulation capacities from flexible resources in energy coupling,storage,and consumption links,central energy stations(CESs)can provide additional support to power distribution network(PDN)in case of power disruption.However,existing research has not explicitly revealed the emergency response of PDN with leveraging multiple CESs.This paper proposes a decentralized self-healing strategy of PDN to minimize the entire load loss,in which multi-area CESs’potentials including thermal storage and building thermal inertia,as well as the flexible topology of PDN,are reasonably exploited for service recovery.For sake of privacy preservation,the co-optimization of PDN and CESs is realized in a decentralized manner using adaptive alternating direction method of multipliers(ADMM).Furtherly,bilateral risk management with conditional value-at-risk(CVaR)for PDN and risk constraints for CESs is integrated to deal with uncertainties from outage duration.Case studies are conducted on a modified IEEE 33-bus PDN with multiple CESs.Numerical results illustrate that the proposed strategy can fully utilize the potentials of multi-area CESs for coordinated load restoration.The effectiveness of the performance and behaviors’adaptation against random risks is also validated.展开更多
In this work,a novel performance analysis method for evaluating the robustness of emerging power distribution networks(PDNs),which involve deployable renewable energy sources,is proposed.This is realized with the aid ...In this work,a novel performance analysis method for evaluating the robustness of emerging power distribution networks(PDNs),which involve deployable renewable energy sources,is proposed.This is realized with the aid of the outage probability(OP)criterion in the context of cooperative communications,which is widely considered in modern wireless communication systems.The main usefulness of this method is that it allows the involved components to communicate to each-other by means of a robust and flexible wireless sensor network architecture.In this context,any conventional medium voltage(MV)bus of the PDN is represented as a wireless relay node where data signals gathered from each MV bus can be forwarded reliably to a control station for the subsequent processing.The received signals at wireless nodes are decoded and then forwarded to ensure minimal errors and maximal robustness at the receiving site.The considered OP analysis denotes the probability that the power of a received information signal drops below a pre-defined threshold which satisfies the acceptable Quality of Service requirements of a reliable signal reception.To this end,simple closed-form expressions are proposed for the OP of a regenerative cooperative-based PDN in the presence of various multipath fading effects,which degrade information signals during wireless transmission.The offered results are rather simple and provide meaningful insights for the design and deployment of smart grid systems.展开更多
A high proportion of renewable energy affects the power quality of distribution networks,and surplus energy will be sold to the upstream grid at a low price.In this paper,considering peer-to-peer energy transactions,t...A high proportion of renewable energy affects the power quality of distribution networks,and surplus energy will be sold to the upstream grid at a low price.In this paper,considering peer-to-peer energy transactions,the energy router-based multiple distribution networks are analyzed to solve the above problems and realize collaborative consumption of renewable energy.Presently,the investing cost of an energy router is high,and research on the economic operation of energy routers in distribution networks is little.Therefore,this paper establishes a planning model for energy routers considering peer-to-peer energy transactions among distribution networks,and explores the benefits of peer-to-peer energy transactions through energy router based multiple distribution networks.A structure of an energy router suitable for peer-to-peer energy transactions is selected,and a power flow calculation model based on a multilayer structure is established.The energy router’s scheduling model is established,and unique functions of the energy router and revenue of each distribution network are considered.A power flow calculation model based on peer-to-peer interconnection of multiple distribution networks through energy routers is also established.Finally,simulation results verify the effectiveness of the proposed planning model.Results show that peer-topeer energy transaction among distribution networks through energy routers can effectively reduce the comprehensive cost of distribution networks,significantly improve the power quality of the distribution networks,and reduce the impact of power fluctuation on the upstream grid incurred by the distribution network.展开更多
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
基金supported by National Key Research and Development Program of China (2016YFB0900500,2017YFB0903100)the State Grid Science and Technology Project (SGRI-DL-F1-51-011)
文摘The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.
文摘A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.
基金supported by the Postdoctoral Research Funding Program of Jiangsu Province under Grant 2021K622C.
文摘A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks.Secondly,considering the transaction needs between users and power suppliers in ADN,an energy request mechanism is proposed,and the optimization objective function is designed by integrating cost aware requests and storage aware requests.Finally,the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum power purchase cost of users and the maximum power sold by power suppliers.The experimental demonstration of the proposed method based on the experimental platform shows that when the number of participants is no more than 10,the transaction delay time is 0.2 s,and the transaction cost fluctuates at 200,000 yuan,which is better than other comparison methods.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
基金supported by the Science and Technology Project of State Grid Xinjiang Electric Power Co.,Ltd.(Analysis model of the influence of multi-dimensional and different proportion penetration of new energy on the incremental cost of the system,SGXJ0000FCJS2310224).
文摘With the implementation of China’s carbon-peaking and carbon-neutrality strategy,new energy will achieve leapfrog growth.Due to the good economics of distributed new-energy generation,it can not only save users’own investment,but also help to achieve local consumption of new energy.However,it will also bring about a series of incremental costs to the power grid.This paper first enumerates the concept,development status and scheduling mode of a distributed new-energy storage system.Based on the above,it establishes a new-energy power generation model and an energy storage system charging and discharging model,and proposes a global optimization scheduling model for a distributed new-energy storage system,considering the time-of-use electricity price and taking the lowest total operating cost of the distributed new-energy power generation system as the objective function.Finally,it proposes a distribution network incremental cost analysis model based on the penetration of distributed new energy.The calculation results show that the incremental cost of grid-connected distributed new energy is 1.0849,1.2585 and 1.3473 yuan/kWh,respectively,which indicates that the global dispatching model can optimize the power consumption structure of a distributed power generation system,and has the function of peak shaving and valley filling,but the incremental cost of the distribution network will also increase.
文摘The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not only the technical improvement of the network, through its renewal with the introduction of the technological innovations in the equipment and circuit components as well as the optimal planning of the design and development of the network, but also requires the use of the methods and software tools to facilitate the operation process. The paper presents a strategy for power / energy saving which is replacement of the 6 kV voltage level with 20 kV voltage level. In this line, different urban distribution networks were analyzed using fuzzy techniques for load modeling.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2021QN1066)。
文摘Owing to potential regulation capacities from flexible resources in energy coupling,storage,and consumption links,central energy stations(CESs)can provide additional support to power distribution network(PDN)in case of power disruption.However,existing research has not explicitly revealed the emergency response of PDN with leveraging multiple CESs.This paper proposes a decentralized self-healing strategy of PDN to minimize the entire load loss,in which multi-area CESs’potentials including thermal storage and building thermal inertia,as well as the flexible topology of PDN,are reasonably exploited for service recovery.For sake of privacy preservation,the co-optimization of PDN and CESs is realized in a decentralized manner using adaptive alternating direction method of multipliers(ADMM).Furtherly,bilateral risk management with conditional value-at-risk(CVaR)for PDN and risk constraints for CESs is integrated to deal with uncertainties from outage duration.Case studies are conducted on a modified IEEE 33-bus PDN with multiple CESs.Numerical results illustrate that the proposed strategy can fully utilize the potentials of multi-area CESs for coordinated load restoration.The effectiveness of the performance and behaviors’adaptation against random risks is also validated.
基金This work was supported by the Research Program DGRES(MIS 380360)within the Research Activity ARCHIMEDES III,funded by the NSRF 2007-2013,Greece.
文摘In this work,a novel performance analysis method for evaluating the robustness of emerging power distribution networks(PDNs),which involve deployable renewable energy sources,is proposed.This is realized with the aid of the outage probability(OP)criterion in the context of cooperative communications,which is widely considered in modern wireless communication systems.The main usefulness of this method is that it allows the involved components to communicate to each-other by means of a robust and flexible wireless sensor network architecture.In this context,any conventional medium voltage(MV)bus of the PDN is represented as a wireless relay node where data signals gathered from each MV bus can be forwarded reliably to a control station for the subsequent processing.The received signals at wireless nodes are decoded and then forwarded to ensure minimal errors and maximal robustness at the receiving site.The considered OP analysis denotes the probability that the power of a received information signal drops below a pre-defined threshold which satisfies the acceptable Quality of Service requirements of a reliable signal reception.To this end,simple closed-form expressions are proposed for the OP of a regenerative cooperative-based PDN in the presence of various multipath fading effects,which degrade information signals during wireless transmission.The offered results are rather simple and provide meaningful insights for the design and deployment of smart grid systems.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2018JBZ004.
文摘A high proportion of renewable energy affects the power quality of distribution networks,and surplus energy will be sold to the upstream grid at a low price.In this paper,considering peer-to-peer energy transactions,the energy router-based multiple distribution networks are analyzed to solve the above problems and realize collaborative consumption of renewable energy.Presently,the investing cost of an energy router is high,and research on the economic operation of energy routers in distribution networks is little.Therefore,this paper establishes a planning model for energy routers considering peer-to-peer energy transactions among distribution networks,and explores the benefits of peer-to-peer energy transactions through energy router based multiple distribution networks.A structure of an energy router suitable for peer-to-peer energy transactions is selected,and a power flow calculation model based on a multilayer structure is established.The energy router’s scheduling model is established,and unique functions of the energy router and revenue of each distribution network are considered.A power flow calculation model based on peer-to-peer interconnection of multiple distribution networks through energy routers is also established.Finally,simulation results verify the effectiveness of the proposed planning model.Results show that peer-topeer energy transaction among distribution networks through energy routers can effectively reduce the comprehensive cost of distribution networks,significantly improve the power quality of the distribution networks,and reduce the impact of power fluctuation on the upstream grid incurred by the distribution network.