The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and e...The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and economy is particularly important for the decision of neutral grounding mode. This paper proposes a new decision method of neutral point grounding mode for mediumvoltage distribution network. The objective function is constructed for the decision according the life cycle cost. The reliability of the neutral point grounding mode is taken into account through treating the outage cost as an operating cost. The safety condition of the neutral point grounding mode is preserved as the constraint condition of decision models, so the decision method can generate the most economical and reliable scheme of neutral point grounding mode within a safe limit. The example is used to verify the feasibility and effectiveness of the decision method.展开更多
Identification of faulty feeders in resonant grounding distribution networks remains a significant challenge dueto the weak fault current and complicated working conditions.In this paper, we present a deep learning-ba...Identification of faulty feeders in resonant grounding distribution networks remains a significant challenge dueto the weak fault current and complicated working conditions.In this paper, we present a deep learning-based multi-labelclassification framework to reliably distinguish the faulty feeder.Three different neural networks (NNs) including the multilayerperceptron, one-dimensional convolutional neural network (1DCNN), and 2D CNN are built. However, the labeled data maybe difficult to obtain in the actual environment. We use thesimplified simulation model based on a full-scale test field (FSTF)to obtain sufficient labeled source data. Being different frommost learning-based methods, assuming that the distribution ofsource domain and target domain is identical, we propose asamples-based transfer learning method to improve the domainadaptation by using samples in the source domain with properweights. The TrAdaBoost algorithm is adopted to update theweights of each sample. The recorded data obtained in the FSTFare utilized to test the domain adaptability. According to ourvalidation and testing, the validation accuracies are high whenthere is sufficient labeled data for training the proposed NNs.The proposed 2D CNN has the best domain adaptability. TheTrAdaBoost algorithm can help the NNs to train an efficientclassifier that has better domain adaptation. It has been thereforeconcluded that the proposed method, especially the 2D CNN, issuitable for actual distribution networks.展开更多
文摘The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and economy is particularly important for the decision of neutral grounding mode. This paper proposes a new decision method of neutral point grounding mode for mediumvoltage distribution network. The objective function is constructed for the decision according the life cycle cost. The reliability of the neutral point grounding mode is taken into account through treating the outage cost as an operating cost. The safety condition of the neutral point grounding mode is preserved as the constraint condition of decision models, so the decision method can generate the most economical and reliable scheme of neutral point grounding mode within a safe limit. The example is used to verify the feasibility and effectiveness of the decision method.
基金the Key Program of the Chinese Academy of Sciences under Grant QYZDJ-SSW-JSC025in part by the National Natural Science Foundation of China under Grant 51721005,and in part by the Chinese Scholarship Council(CSC).
文摘Identification of faulty feeders in resonant grounding distribution networks remains a significant challenge dueto the weak fault current and complicated working conditions.In this paper, we present a deep learning-based multi-labelclassification framework to reliably distinguish the faulty feeder.Three different neural networks (NNs) including the multilayerperceptron, one-dimensional convolutional neural network (1DCNN), and 2D CNN are built. However, the labeled data maybe difficult to obtain in the actual environment. We use thesimplified simulation model based on a full-scale test field (FSTF)to obtain sufficient labeled source data. Being different frommost learning-based methods, assuming that the distribution ofsource domain and target domain is identical, we propose asamples-based transfer learning method to improve the domainadaptation by using samples in the source domain with properweights. The TrAdaBoost algorithm is adopted to update theweights of each sample. The recorded data obtained in the FSTFare utilized to test the domain adaptability. According to ourvalidation and testing, the validation accuracies are high whenthere is sufficient labeled data for training the proposed NNs.The proposed 2D CNN has the best domain adaptability. TheTrAdaBoost algorithm can help the NNs to train an efficientclassifier that has better domain adaptation. It has been thereforeconcluded that the proposed method, especially the 2D CNN, issuitable for actual distribution networks.