The laminar boundary layer behind a constant-speed shock wave moving through a dusty gas along a solid surface is studied.The Saffman lift force acting on a spherical particle in a gas boundary layer is taken into acc...The laminar boundary layer behind a constant-speed shock wave moving through a dusty gas along a solid surface is studied.The Saffman lift force acting on a spherical particle in a gas boundary layer is taken into account.A method for calculating the density profile of dispersed phase near the wall is pro- posed and some numerical results are given.It is shown that behind the shock wave,there exists a curved thin layer where the density of particles is many times higher than the original one.This dust collection effect may be of essential importance to the problem of dust explosion in industry.展开更多
文摘The laminar boundary layer behind a constant-speed shock wave moving through a dusty gas along a solid surface is studied.The Saffman lift force acting on a spherical particle in a gas boundary layer is taken into account.A method for calculating the density profile of dispersed phase near the wall is pro- posed and some numerical results are given.It is shown that behind the shock wave,there exists a curved thin layer where the density of particles is many times higher than the original one.This dust collection effect may be of essential importance to the problem of dust explosion in industry.