Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring d...Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring degraded alpine meadows have not been evaluated.In this study,moderately degraded plots,in which the vegetation coverage was approximately 65%and the dominant plant species was Potentilla anserina L,with grazing exclusion for 2 to 23 years,were selected in alpine meadows of Haibei in Qinghai-Tibet Plateau.Plant coverage,plant height,biomass,soil bulk density,saturated water content,soil organic carbon(SOC)and total nitrogen(TN)were evaluated.The results were as follows:(1)With aboveground biomass and total saturated water content at 0-40 cm depth,the average SOC and TN contents in moderately degraded alpine meadows increased as a power function,and the plant height increased as a log function.(2)The average soil bulk density at 0-40 cm depth first decreased and then increased with increasing grazing exclusion duration,and the minimum value of 0.90 g·cm^(-3) was reached at 15.23 years.The plant coverage,total belowground biomass at 0-40 cm depth,total aboveground and belowground biomass first increased and then decreased,their maximum values(80.49%,2452.92g·m^(-2),2891.06 g·m^(-2))were reached at 9.41,9.46 and 10.25 years,respectively.Long-term grazing exclusion is apparently harmful for the sustainable restoration of degraded alpine meadows.The optimal duration of grazing exclusion for the restoration of moderately degraded alpine meadows was 10 years.This research suggests that moderate disturbance should be allowed in moderately degraded alpine meadows after 10years of grazing exclusion.展开更多
The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and ...The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous.We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species(Betula platyphylla and Acer mono)in four mixed broadleaved-Korean pine(Pinus koraiensis)forests along a latitudinal gradient in Northeast China.We found that leaf economics traits and vein traits were decoupled in shade-intolerant species,Betula platphylla,but significantly coupled in a shadetolerant species,A.mono.We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species.Furthermore,leaf economic traits were positively correlated with the soil water gradient for both species,whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species.Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species,vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species.Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands.We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes.展开更多
To evaluate the effects of nitrogen(N)and irrigation coupling on the soil N distribution,plant N utilization,and fruit yield of rabbiteye blueberries(Vaccinium virgatum),a field experiment was designed using two facto...To evaluate the effects of nitrogen(N)and irrigation coupling on the soil N distribution,plant N utilization,and fruit yield of rabbiteye blueberries(Vaccinium virgatum),a field experiment was designed using two factors(water and fertilizer application)with four levels of irrigation and three levels of fertilization,and a control.Under the different water and fertilizer combinations,N primarily accumulated in the leaves.Irrigation and N application within appropriate ranges(pure N≤29 g/plant and irrigation volume≤2.5 L/plant)significantly improved the blueberry fruit yield.Increases in water and N within these ranges promoted the effective accumulation of N in various organs and the absorption and utilization of N in the plants,which ultimately promoted blueberry yield.With increased N application rate,the nitrate N content of the 0–20 cm and 20–50 cm soil layers increased.With increased irrigation volume,the nitrate N content of the 0–20 cm soil layer decreased,while the nitrate content in the 20–50 cm soil layer increased.Low N and moderate water treatments resulted in high fruit yields and reduced nitrate N retention in the soil.Under these conditions,the economic input-output ratio was high and the soil N accumulation was low,and thus the economic and ecological benefits were maximized.展开更多
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie...In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.展开更多
The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention.Soil microbial activity and nitrogen(N)levels are important indicators of the effect...The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention.Soil microbial activity and nitrogen(N)levels are important indicators of the effect of reclaimed water irrigation on environment.This study evaluated soil physicochemical properties and microbial community structure in soils irrigated with reclaimed water and receiving varied amounts of N fertilizer.The results indicated that the reclaimed water irrigation increased soil electrical conductivity(EC)and soil water content(SWC).The N treatment has highly significant effect on the ACE,Chao,Shannon(H)and Coverage indices.Based on a 16S ribosomal RNA(16S rRNA)sequence analysis,the Proteobacteria,Gemmatimonadetes and Bacteroidetes were more abundant in soil irrigated with reclaimed water than in soil irrigated with clean water.Stronger clustering of microbial communities using either clean or reclaimed water for irrigation indicated that the type of irrigation water may have a greater influence on the structure of soil microbial community than N fertilizer treatment.Based on a canonical correspondence analysis(CCA)between the species of soil microbes and the chemical properties of the soil,which indicated that nitrate N(NO3-–-N)and total phosphorus(TP)had significant impact on abundance of Verrucomicrobia and Gemmatimonadetes,meanwhile the p H and organic matter(OM)had impact on abundance of Firmicutes and Actinobacteria significantly.It was beneficial to the improvement of soil bacterial activity and fertility under 120 mg kg^-1 N with reclaimed water irrigation.展开更多
Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fe...Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fertilizer. With prilled urea serving as N fertilizer, a two-year field experiment with two N rates (120 and 195 kg/hm2) and four basal N application treatments (B50, all fertilizer was broadcast with 50% as basal N;D50, D70 and D100 corresponded to 50%, 70% and 100% of N deeply placed as basal N, respectively) were conducted in direct-seeded rice in 2013 and 2014. Soil N distribution and plant N uptake were analyzed. The results showed that deep placement of basal N significantly increased total N concentrations in soil. Significantly greater soil N concentrations were observed in D100 compared with B50 at 0, 6 and 12 cm (lateral distance) from the fertilizer application point both at mid-tillering and heading stages. D100 presented the highest values of dry matter and N accumulation from seeding to mid-tillering stages, but it presented the lowest values from heading to maturity stages and the lowest grain yield for no sufficient N supply at the reproductive stage. The grain yield of D50 was the highest, however, no significant difference was observed in grain yield, N agronomic efficiency or N recovery efficiency between D70 and D50, or between D70 and B50, while D70 was more labor saving than D50 for only one topdressing was applied in D70 compared with twice in other treatments. The above results indicated that 70% of fertilizer-N deeply placed as a basal fertilizer and 30% of fertilizer-N topdressed as a panicle fertilizer constituted an ideal approach for direct-seeded rice. This recommendation was further verified through on-farm demonstration experiments in 2015, in which D70 produced in similar grain yields as B50 did.展开更多
With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas ...With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas River watershed. The results showed that the soil moisture data from all soil layers exhibited a normal distribution, with average values of 14.08%-21.55%. Geostatistical analysis revealed that the content of soil moisture had a moder- ate spatial autocorrelation with the ratios of nugget/sill ranging from 0.500 to 0.718, which implies that the spatial pattern of soil moisture is influenced by the combined effects of structural factors and random factors. Remarkable spatial distributions with stripped and mottled features were found for soil moisture in all different soil layers. The landform and crop planting had a relatively big influence on the spatial distribution of soil moisture; total soil salinity was high in east but low in west, and non-salinized soil and lightly salinized soil appeared at the northwest and southwest of the study area. Under the effect of reservoir leakage, the heavily salinized soils are widely distributed in the middle of the study area. The areas of the non-salinized and lightly salinized soils decreased gradually with soil depth increment, which is contrary to the case for saline soils that reached a maximum of 245.67 km2 at the layer of 50-70 cm. The types of soil salinization in Manas River watershed were classified into four classes: the sulfate, chloride-sulfate, sulfate-chloride and chloride. The sulfate salinized soil is most widely distributed in the surface layer. The areas of chloride-sulfate, sulfate-chloride, and chloride salinized soils increased gradually along with the increment of soil depth; the variation range of the average values of soil organic matter content was be- tween 7.48%-11.33%. The ratios of nugget/sill reduced gradually from 0.698 to 0.299 with soil depth increment, which shows that the content of soil organic matter has a moderate spatial autocorrelation. The soil organic matter in all soil layers met normal distribution after logarithmic transformation. The spatial distribution patterns of soil or- ganic matter and soil moisture were similar; the areas with high organic matter contents were mainly distributed in the south of the study area, with the lowest contents in the middle.展开更多
Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence respo...Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (Ⅰ) and a fluctuant water table (Ⅳ), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%-57% higher than that at static high water table (Ⅱ and Ⅲ). After nitrogen addition, however, highest CO2 emission was found at Ⅱ and lowest emission at Ⅲ. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland.展开更多
Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Su...Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Supplemental irrigation had three levels: 60%(W_1),70%(W_2) and 80%(W3) of the targeted relative water content at 0-40 cm of soil layer during jointing period of winter wheat.Nitrogen fertilization had three levels: not using nitrogen(N_0),using pure nitrogen of 195 kg/hm^2(N_(195)) and 255 kg/hm^2(N_(255)).Results showed that:(i)different supplemental irrigation and nitrogen fertilization significantly affected plant height and leaf area of winter wheat during key growth period.Under the same supplemental irrigation treatment,both plant height and leaf area of winter wheat showed as N_(255)> N_(195)> N_0(P <0.05).Plant height in N_(195) and N_(255)treatments was significantly higher than that in N_0 treatment,but there was not significant difference between N_(195) and N_(255)(P >0.05).Under the same nitrogen fertilization,plant height in W_2(569.4 m^3/hm^2) and W3(873.45 m^3/hm^2) treatments was significant higher than that in W_1(265.2 m^3/hm^2),but there was not significant difference between W_2 and W3(P >0.05).It illustrated that excessive nitrogen fertilization and supplemental irrigation did not significantly affect plant height and leaf area of winter wheat.(ii) Under the same nitrogen fertilization level,yield increase effect of winter wheat by supplemental irrigation showed a declining trend with nitrogen application amount increased.It illustrated that nitrogen fertilization and supplemental irrigation had certain critical values on the yield of winter wheat.When surpassing the critical value,the yield declined.When nitrogen fertilization amount was 195 kg/hm^2,and supplemental irrigation amount was 70% of field moisture capacity(569.4 m^3/hm^2),the highest yield 8500 kg/hm^2 could be obtained.(iii) During mature period of winter wheat,nitrogen accumulation amount of plant treated by nitrogen was significantly higher than that not treated by nitrogen(P <0.05).But under the treatments of W_2 and W3,nitrogen accumulation amount in N_(255) significantly declined when compared with N_(195)(P <0.05).Especially under W3(873.45 m^3/hm^2) level,nitrogen accumulation amount in N_(255) was even lower than N_0.Under the treatments of N_0 and N_(195),nitrogen accumulation amount of plant significantly increased with supplemental irrigation increased(P < 0.05).But under N_(255) treatment,there was not significant difference(P > 0.05).It illustrated that moderate supplemental irrigation and nitrogen fertilization could improve nitrogen absorption ability of winter wheat,but excessive supplemental irrigation and nitrogen fertilization were not favorable for plant's nitrogen absorption.(iv) Although the increase of supplemental irrigation during jointing period improved nitrogen absorption ability of winter wheat and promoted winter wheat absorbing more nitrogen,it inhibited nitrogen transferring and distributing to seed.Comprehensively considering growth condition of winter wheat and nitrogen risk condition,it is suggested that nitrogen application amount was 195 kg/hm^2,and supplemental irrigation reached 70% of field moisture capacity(569.4 m^3/hm^2),which could be as the suitable water and fertilizer use amounts in the region.展开更多
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solu...Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.展开更多
Carbohydrate represents an important part of the soil labile organic carbon pool. Water soluble carbohydrate drives the C cycle in forest soil by affecting microbial activity and hot water extractable car- bohydrate i...Carbohydrate represents an important part of the soil labile organic carbon pool. Water soluble carbohydrate drives the C cycle in forest soil by affecting microbial activity and hot water extractable car- bohydrate is thought related to soil carbon sequestration due to the asso- ciation with soil aggregation. In a temperate forest region of northeast China, Changbai Mountain, we investigated the abundance, spatial dis- tribution, and seasonal dynamics of cool and hot-water extractable car- bohydrate in soils under mixed broad-leaved Korean pine forest. The concentrations of cool-water extractable carbohydrate (CWECH) in three soil layers (0-5, 5-10, 10-20 cm) ranged from 4.1 to 193.3 g.kg-1 dry soil, decreasing rapidly with soil depth. On an annual average, the CWECH concentrations in soils at depths of 5-10 and 10-20 cm were 54.2% and 24.0%, respectively, of that in the 0-5 cm soil layer. CWECH showed distinct seasonal dynamics with the highest concentrations in early spring, lowest in summer, and increasing concentrations in autumn. Hot-water extractable carbohydrate (HWECH) concentrations in three soil layers ranged from 121.4 to 2026.2 g.kgq dry soil, which were about one order of magnitude higher than CWECH. The abundance of HWECH was even more profile-dependent than CWECH, and decreased more rapidly with soil depth. On an annual average, the HWECH concentration in soils 10-20 cm deep was about one order of magnitude lower than that in the top 0-5 cm soil. The seasonality of HWECH roughly tracked that of CWECH but with seasonal fluctuations of smaller amplitude. The car- bohydrate concentrations in cool/hot water extracts of soil were positively correlated with UV254 and UV2s0 of the same solution, which has implications for predicting the leaching loss of water soluble organic carbon.展开更多
Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, an...Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes &gt;2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes &lt;0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(&lt;0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term.展开更多
The effect of NaCl on soil strength was investigated in this project based on salinity concentrations of 0 g/L, 5 g/L, 20 g/L, and 50 g/L as well as varying water contents of 15%-20%. Laser particle size analyzer was ...The effect of NaCl on soil strength was investigated in this project based on salinity concentrations of 0 g/L, 5 g/L, 20 g/L, and 50 g/L as well as varying water contents of 15%-20%. Laser particle size analyzer was also performed to explain possible effects. From particle size analysis and strength tests, it is hypothesized that the strength of the soil is increased with the addition of certain salinity concentrations until there are reversed effects, which is between 20 g/L and 50 g/L from our study. The increase of strength is suggested to be the affect of a greater variety of particle sizes. Since NaCI plays a role in the particle size distribution, it also plays a role in the strength of soils. The degree of the effect of the water content also differs from concentrations, and could be due to the variation of hydration film thickness on particles, which is affected by the ions introduced from water.展开更多
Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages,...Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.展开更多
[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetat...[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.展开更多
Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soi...Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soil N density and environmental factors were explored using data from China's Second National Soil Survey and field investigation in northwest China and the Tibetan Plateau.China's soil N storage at a depth of one meter was estimated at 7.4 Pg,with an average density of 0.84 kg m^(-2).Soil N density appeared to be high in southwest and northeast China and low in the middle areas of the country.Soil N density increased from the arid to semi-arid zone in northern China,and decreased from cold-temperate to tropical zone in the eastern part of the country.An analysis of general linear model suggested that climate and vegetation determined the spatial pattern of soil N density for natural vegetation,which explained 75.4% of the total variance.展开更多
It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of...It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of rice influence grain yield, as well as water and N utilization efficiency. An experiment was conducted using the upland rice cultivar Zhonghan 3(a japonica cultivar) and paddy rice cultivar Huaidao 5(also a japonica cultivar) using three N levels, namely, 2 g urea/pot(low amount, LN), 3 g urea/pot(normal amount, NN), and 4 g urea/pot(high amount, HN), and three soil water potentials(SWPs, namely, well-watered(0 kPa), mildly dried(–20 kPa) and severely dried(–40 kPa). The results showed that with decreasing SWP, the percentage of upland rice roots increased in the 0–5 cm tillage layer, and decreased in the 5–10 and 10–20 cm tillage layers, whereas paddy rice roots showed the opposite trend. With increasing amounts of N, the yield of upland and paddy rice increased, and the percentage of root volume ratios of the two rice cultivars in the 0–5 and 5–10 cm tillage layers increased, whereas that in the 10–20 cm tillage layer decreased. The roots of upland rice are mainly distributed in the 10–20 cm tillage layer, whereas most paddy rice roots are in the 0–5 cm tillage layer. These results indicate that the combination of-20 kPa SWP and NN in upland rice and 0 kPa SWP and LN in paddy rice promotes the growth of the root system during the middle and late stages, which in turn may decrease the requirements for water and N fertilizer and increase rice yield.展开更多
The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw...The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitrogen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreased with nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, rice not only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPE when mild water stressed. There were obvious interactions between nitrogen fertilizer and water management, such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and that on decreasing NDMPE was intensified.展开更多
Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics frompartic...Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.展开更多
Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa...Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa lt content is marked-ly affected by groundwater,irratio nal irrigation in artificial oasis.By analyzing the soil moisture,salt content and groundwa-ter table in different areas of old oasis,new oasis and desert in Fukang Oa sis,it is shown that topography and l and use are main factors affecting the change of groundwater table,the redistribution of soil moisture and salt cont ent.When undis-turbed by human,the groundwater tab le rises from mountain to belt of grou nd water spillage,the groundwater t able rises mightily in plain because of the artificial irrigation,and the secondary salinization of soil is very seriou s.In oasis the ground-water table raises compared with that in the natural desert at the same latitude.In old oasis of upper reaches o f river salt has not been concentrated too much in rhizosphere because this area is the belt of groundwater drainage,soil t exture is coarse,the groundwater table is very low,and the salt in soil is drained i nto the groundwater.The new oasis has been the areas of salt accumulation becau se of the artificial irrigation,the salt content in soil is higher than th at in old oasis,so some cultivated fields here had to be thrown out because of the serious s econdary salinization.展开更多
基金funded by the National Natural Science Foundation of China(32001149,U20A2006,31971507)Applied Basic Research Project of Qinghai Province(2022-ZJ-716)+3 种基金Youth Innovation Promotion Association CAS(2022436)Joint Grant from Chinese Academy of Sciences-People’s Government of Qinghai Province on Sanjiangyuan National Park(LHZX-2020-07)Chinese Academy of Science(CAS)"Light of West China"Program(2018)"The effect of grazing on grassland productivity in the basin of Qinghai Lake"。
文摘Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring degraded alpine meadows have not been evaluated.In this study,moderately degraded plots,in which the vegetation coverage was approximately 65%and the dominant plant species was Potentilla anserina L,with grazing exclusion for 2 to 23 years,were selected in alpine meadows of Haibei in Qinghai-Tibet Plateau.Plant coverage,plant height,biomass,soil bulk density,saturated water content,soil organic carbon(SOC)and total nitrogen(TN)were evaluated.The results were as follows:(1)With aboveground biomass and total saturated water content at 0-40 cm depth,the average SOC and TN contents in moderately degraded alpine meadows increased as a power function,and the plant height increased as a log function.(2)The average soil bulk density at 0-40 cm depth first decreased and then increased with increasing grazing exclusion duration,and the minimum value of 0.90 g·cm^(-3) was reached at 15.23 years.The plant coverage,total belowground biomass at 0-40 cm depth,total aboveground and belowground biomass first increased and then decreased,their maximum values(80.49%,2452.92g·m^(-2),2891.06 g·m^(-2))were reached at 9.41,9.46 and 10.25 years,respectively.Long-term grazing exclusion is apparently harmful for the sustainable restoration of degraded alpine meadows.The optimal duration of grazing exclusion for the restoration of moderately degraded alpine meadows was 10 years.This research suggests that moderate disturbance should be allowed in moderately degraded alpine meadows after 10years of grazing exclusion.
基金This work was supported by the National Key R&D Program of China(2022YFD2201100)the National Natural Science Foundation of China(31971636)the Fundamental Research Funds for the Central Universities(2572022DS13).
文摘The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous.We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species(Betula platyphylla and Acer mono)in four mixed broadleaved-Korean pine(Pinus koraiensis)forests along a latitudinal gradient in Northeast China.We found that leaf economics traits and vein traits were decoupled in shade-intolerant species,Betula platphylla,but significantly coupled in a shadetolerant species,A.mono.We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species.Furthermore,leaf economic traits were positively correlated with the soil water gradient for both species,whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species.Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species,vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species.Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands.We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes.
基金funded by the National Natural Science Foundation of China(NSFC 31260192)the Major Projects in Guizhou Province(SY[2015]6032-2)。
文摘To evaluate the effects of nitrogen(N)and irrigation coupling on the soil N distribution,plant N utilization,and fruit yield of rabbiteye blueberries(Vaccinium virgatum),a field experiment was designed using two factors(water and fertilizer application)with four levels of irrigation and three levels of fertilization,and a control.Under the different water and fertilizer combinations,N primarily accumulated in the leaves.Irrigation and N application within appropriate ranges(pure N≤29 g/plant and irrigation volume≤2.5 L/plant)significantly improved the blueberry fruit yield.Increases in water and N within these ranges promoted the effective accumulation of N in various organs and the absorption and utilization of N in the plants,which ultimately promoted blueberry yield.With increased N application rate,the nitrate N content of the 0–20 cm and 20–50 cm soil layers increased.With increased irrigation volume,the nitrate N content of the 0–20 cm soil layer decreased,while the nitrate content in the 20–50 cm soil layer increased.Low N and moderate water treatments resulted in high fruit yields and reduced nitrate N retention in the soil.Under these conditions,the economic input-output ratio was high and the soil N accumulation was low,and thus the economic and ecological benefits were maximized.
基金funded by the Special Fund for AgroScientific Research in the Public Interest of China (20110300508, 201203030)supported in partial by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD05B05-3, 2013BAD07B11)the International Plant Nutrition Institute, Canada (IPNI China Program: Hunan-17)
文摘In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.
基金the financial support for this research from the National High-Tech R&D Program of China (2012AA101404)the National Natural Science Foundation of China (51209208, 51479201)
文摘The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention.Soil microbial activity and nitrogen(N)levels are important indicators of the effect of reclaimed water irrigation on environment.This study evaluated soil physicochemical properties and microbial community structure in soils irrigated with reclaimed water and receiving varied amounts of N fertilizer.The results indicated that the reclaimed water irrigation increased soil electrical conductivity(EC)and soil water content(SWC).The N treatment has highly significant effect on the ACE,Chao,Shannon(H)and Coverage indices.Based on a 16S ribosomal RNA(16S rRNA)sequence analysis,the Proteobacteria,Gemmatimonadetes and Bacteroidetes were more abundant in soil irrigated with reclaimed water than in soil irrigated with clean water.Stronger clustering of microbial communities using either clean or reclaimed water for irrigation indicated that the type of irrigation water may have a greater influence on the structure of soil microbial community than N fertilizer treatment.Based on a canonical correspondence analysis(CCA)between the species of soil microbes and the chemical properties of the soil,which indicated that nitrate N(NO3-–-N)and total phosphorus(TP)had significant impact on abundance of Verrucomicrobia and Gemmatimonadetes,meanwhile the p H and organic matter(OM)had impact on abundance of Firmicutes and Actinobacteria significantly.It was beneficial to the improvement of soil bacterial activity and fertility under 120 mg kg^-1 N with reclaimed water irrigation.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFD0300108)the National Natural Science Foundation of China(Grant Nos.31671630 and 31371581)the National Rice Industry Technology System(CARS-01-04A)in China
文摘Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fertilizer. With prilled urea serving as N fertilizer, a two-year field experiment with two N rates (120 and 195 kg/hm2) and four basal N application treatments (B50, all fertilizer was broadcast with 50% as basal N;D50, D70 and D100 corresponded to 50%, 70% and 100% of N deeply placed as basal N, respectively) were conducted in direct-seeded rice in 2013 and 2014. Soil N distribution and plant N uptake were analyzed. The results showed that deep placement of basal N significantly increased total N concentrations in soil. Significantly greater soil N concentrations were observed in D100 compared with B50 at 0, 6 and 12 cm (lateral distance) from the fertilizer application point both at mid-tillering and heading stages. D100 presented the highest values of dry matter and N accumulation from seeding to mid-tillering stages, but it presented the lowest values from heading to maturity stages and the lowest grain yield for no sufficient N supply at the reproductive stage. The grain yield of D50 was the highest, however, no significant difference was observed in grain yield, N agronomic efficiency or N recovery efficiency between D70 and D50, or between D70 and B50, while D70 was more labor saving than D50 for only one topdressing was applied in D70 compared with twice in other treatments. The above results indicated that 70% of fertilizer-N deeply placed as a basal fertilizer and 30% of fertilizer-N topdressed as a panicle fertilizer constituted an ideal approach for direct-seeded rice. This recommendation was further verified through on-farm demonstration experiments in 2015, in which D70 produced in similar grain yields as B50 did.
基金funded by the National Basic Research Program of China(2009CB825101)the National Natural Science Foundation of China(41071139)
文摘With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas River watershed. The results showed that the soil moisture data from all soil layers exhibited a normal distribution, with average values of 14.08%-21.55%. Geostatistical analysis revealed that the content of soil moisture had a moder- ate spatial autocorrelation with the ratios of nugget/sill ranging from 0.500 to 0.718, which implies that the spatial pattern of soil moisture is influenced by the combined effects of structural factors and random factors. Remarkable spatial distributions with stripped and mottled features were found for soil moisture in all different soil layers. The landform and crop planting had a relatively big influence on the spatial distribution of soil moisture; total soil salinity was high in east but low in west, and non-salinized soil and lightly salinized soil appeared at the northwest and southwest of the study area. Under the effect of reservoir leakage, the heavily salinized soils are widely distributed in the middle of the study area. The areas of the non-salinized and lightly salinized soils decreased gradually with soil depth increment, which is contrary to the case for saline soils that reached a maximum of 245.67 km2 at the layer of 50-70 cm. The types of soil salinization in Manas River watershed were classified into four classes: the sulfate, chloride-sulfate, sulfate-chloride and chloride. The sulfate salinized soil is most widely distributed in the surface layer. The areas of chloride-sulfate, sulfate-chloride, and chloride salinized soils increased gradually along with the increment of soil depth; the variation range of the average values of soil organic matter content was be- tween 7.48%-11.33%. The ratios of nugget/sill reduced gradually from 0.698 to 0.299 with soil depth increment, which shows that the content of soil organic matter has a moderate spatial autocorrelation. The soil organic matter in all soil layers met normal distribution after logarithmic transformation. The spatial distribution patterns of soil or- ganic matter and soil moisture were similar; the areas with high organic matter contents were mainly distributed in the south of the study area, with the lowest contents in the middle.
文摘Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (Ⅰ) and a fluctuant water table (Ⅳ), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%-57% higher than that at static high water table (Ⅱ and Ⅲ). After nitrogen addition, however, highest CO2 emission was found at Ⅱ and lowest emission at Ⅲ. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland.
基金Supported by National Key Research Plan Project(2016YFD0801001,2016YFD0200103,2017YFD0800500)
文摘Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Supplemental irrigation had three levels: 60%(W_1),70%(W_2) and 80%(W3) of the targeted relative water content at 0-40 cm of soil layer during jointing period of winter wheat.Nitrogen fertilization had three levels: not using nitrogen(N_0),using pure nitrogen of 195 kg/hm^2(N_(195)) and 255 kg/hm^2(N_(255)).Results showed that:(i)different supplemental irrigation and nitrogen fertilization significantly affected plant height and leaf area of winter wheat during key growth period.Under the same supplemental irrigation treatment,both plant height and leaf area of winter wheat showed as N_(255)> N_(195)> N_0(P <0.05).Plant height in N_(195) and N_(255)treatments was significantly higher than that in N_0 treatment,but there was not significant difference between N_(195) and N_(255)(P >0.05).Under the same nitrogen fertilization,plant height in W_2(569.4 m^3/hm^2) and W3(873.45 m^3/hm^2) treatments was significant higher than that in W_1(265.2 m^3/hm^2),but there was not significant difference between W_2 and W3(P >0.05).It illustrated that excessive nitrogen fertilization and supplemental irrigation did not significantly affect plant height and leaf area of winter wheat.(ii) Under the same nitrogen fertilization level,yield increase effect of winter wheat by supplemental irrigation showed a declining trend with nitrogen application amount increased.It illustrated that nitrogen fertilization and supplemental irrigation had certain critical values on the yield of winter wheat.When surpassing the critical value,the yield declined.When nitrogen fertilization amount was 195 kg/hm^2,and supplemental irrigation amount was 70% of field moisture capacity(569.4 m^3/hm^2),the highest yield 8500 kg/hm^2 could be obtained.(iii) During mature period of winter wheat,nitrogen accumulation amount of plant treated by nitrogen was significantly higher than that not treated by nitrogen(P <0.05).But under the treatments of W_2 and W3,nitrogen accumulation amount in N_(255) significantly declined when compared with N_(195)(P <0.05).Especially under W3(873.45 m^3/hm^2) level,nitrogen accumulation amount in N_(255) was even lower than N_0.Under the treatments of N_0 and N_(195),nitrogen accumulation amount of plant significantly increased with supplemental irrigation increased(P < 0.05).But under N_(255) treatment,there was not significant difference(P > 0.05).It illustrated that moderate supplemental irrigation and nitrogen fertilization could improve nitrogen absorption ability of winter wheat,but excessive supplemental irrigation and nitrogen fertilization were not favorable for plant's nitrogen absorption.(iv) Although the increase of supplemental irrigation during jointing period improved nitrogen absorption ability of winter wheat and promoted winter wheat absorbing more nitrogen,it inhibited nitrogen transferring and distributing to seed.Comprehensively considering growth condition of winter wheat and nitrogen risk condition,it is suggested that nitrogen application amount was 195 kg/hm^2,and supplemental irrigation reached 70% of field moisture capacity(569.4 m^3/hm^2),which could be as the suitable water and fertilizer use amounts in the region.
基金Project supported by the Knowledge Innovation Engineering Project of the Chinese Academy of Sciences(No. KSCX2-YW-N-46-06)the National Natural Science Foundation of China(No. 40501030).
文摘Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.
基金supported by made possible through National Key Basic Research Foundation, China (grants 2011CB403202)the National Natural Science Foundation of China (40930107)Program for Changjiang Scholars and Innovative Research Team in University (IRT1054)
文摘Carbohydrate represents an important part of the soil labile organic carbon pool. Water soluble carbohydrate drives the C cycle in forest soil by affecting microbial activity and hot water extractable car- bohydrate is thought related to soil carbon sequestration due to the asso- ciation with soil aggregation. In a temperate forest region of northeast China, Changbai Mountain, we investigated the abundance, spatial dis- tribution, and seasonal dynamics of cool and hot-water extractable car- bohydrate in soils under mixed broad-leaved Korean pine forest. The concentrations of cool-water extractable carbohydrate (CWECH) in three soil layers (0-5, 5-10, 10-20 cm) ranged from 4.1 to 193.3 g.kg-1 dry soil, decreasing rapidly with soil depth. On an annual average, the CWECH concentrations in soils at depths of 5-10 and 10-20 cm were 54.2% and 24.0%, respectively, of that in the 0-5 cm soil layer. CWECH showed distinct seasonal dynamics with the highest concentrations in early spring, lowest in summer, and increasing concentrations in autumn. Hot-water extractable carbohydrate (HWECH) concentrations in three soil layers ranged from 121.4 to 2026.2 g.kgq dry soil, which were about one order of magnitude higher than CWECH. The abundance of HWECH was even more profile-dependent than CWECH, and decreased more rapidly with soil depth. On an annual average, the HWECH concentration in soils 10-20 cm deep was about one order of magnitude lower than that in the top 0-5 cm soil. The seasonality of HWECH roughly tracked that of CWECH but with seasonal fluctuations of smaller amplitude. The car- bohydrate concentrations in cool/hot water extracts of soil were positively correlated with UV254 and UV2s0 of the same solution, which has implications for predicting the leaching loss of water soluble organic carbon.
基金funded by the Science & Technology Pillar Program of Gansu Province (1104FKCH162, 1204FKCH164, 1304FKCH102)the National Natural Science Foundation of China (31560170)
文摘Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes &gt;2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes &lt;0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(&lt;0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term.
基金Acknowledgements: This work was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, SEM, China, and also supported by the United States National Science Foundation. The authors thank Prof. SHEN H. H. and Prof. SHEN H. T. from Clarkson University for their unconditional support to this work.
文摘The effect of NaCl on soil strength was investigated in this project based on salinity concentrations of 0 g/L, 5 g/L, 20 g/L, and 50 g/L as well as varying water contents of 15%-20%. Laser particle size analyzer was also performed to explain possible effects. From particle size analysis and strength tests, it is hypothesized that the strength of the soil is increased with the addition of certain salinity concentrations until there are reversed effects, which is between 20 g/L and 50 g/L from our study. The increase of strength is suggested to be the affect of a greater variety of particle sizes. Since NaCI plays a role in the particle size distribution, it also plays a role in the strength of soils. The degree of the effect of the water content also differs from concentrations, and could be due to the variation of hydration film thickness on particles, which is affected by the ions introduced from water.
基金financially supported by the National Key Research & Development Program of China (Grant No.2022YFD1500402)the National Natural Science Foundation of China (Grant No.51809225)+1 种基金the China Postdoctoral Science Foundation (Grant Nos.2020T130559 and 2019M651977)the Natural Science Foundation of Jiangsu Province, China (Grant No.BK20180929)。
文摘Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.
基金Supported by National Department Public Benefit Research Foundation(201203013)Modern Agricultural Industry Technology System(CARS-11-B-15)+2 种基金IPNI Project(JIANGSU-10)Special Fund for Agro-scientific Research in the Public Interest(201003014-1-2)Jiangsu Agriculture S&T Self-Innovation Project[CX(12)3037]~~
文摘[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.
基金Project supported by the National Natural Science Foundation of China(Nos.40024101,40228001,and 90211016).
文摘Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soil N density and environmental factors were explored using data from China's Second National Soil Survey and field investigation in northwest China and the Tibetan Plateau.China's soil N storage at a depth of one meter was estimated at 7.4 Pg,with an average density of 0.84 kg m^(-2).Soil N density appeared to be high in southwest and northeast China and low in the middle areas of the country.Soil N density increased from the arid to semi-arid zone in northern China,and decreased from cold-temperate to tropical zone in the eastern part of the country.An analysis of general linear model suggested that climate and vegetation determined the spatial pattern of soil N density for natural vegetation,which explained 75.4% of the total variance.
基金the National Natural Science Foundation of China(31671617)the National Key Research and Development Program of China(2016YFD0300502,2016YFD0300206 and 2018YFD0301306)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China。
文摘It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of rice influence grain yield, as well as water and N utilization efficiency. An experiment was conducted using the upland rice cultivar Zhonghan 3(a japonica cultivar) and paddy rice cultivar Huaidao 5(also a japonica cultivar) using three N levels, namely, 2 g urea/pot(low amount, LN), 3 g urea/pot(normal amount, NN), and 4 g urea/pot(high amount, HN), and three soil water potentials(SWPs, namely, well-watered(0 kPa), mildly dried(–20 kPa) and severely dried(–40 kPa). The results showed that with decreasing SWP, the percentage of upland rice roots increased in the 0–5 cm tillage layer, and decreased in the 5–10 and 10–20 cm tillage layers, whereas paddy rice roots showed the opposite trend. With increasing amounts of N, the yield of upland and paddy rice increased, and the percentage of root volume ratios of the two rice cultivars in the 0–5 and 5–10 cm tillage layers increased, whereas that in the 10–20 cm tillage layer decreased. The roots of upland rice are mainly distributed in the 10–20 cm tillage layer, whereas most paddy rice roots are in the 0–5 cm tillage layer. These results indicate that the combination of-20 kPa SWP and NN in upland rice and 0 kPa SWP and LN in paddy rice promotes the growth of the root system during the middle and late stages, which in turn may decrease the requirements for water and N fertilizer and increase rice yield.
基金supported by the National Natural Science Foundation of China(30030090) Jiangsu Key Project of Science and Technology(BE2001331).
文摘The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitrogen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreased with nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, rice not only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPE when mild water stressed. There were obvious interactions between nitrogen fertilizer and water management, such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and that on decreasing NDMPE was intensified.
基金Project supported by the National Natural Science Foundation of China (No, 49971041), the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803) the Director Foundation of the Institute of Soil Science, CAS (No. ISSDF0004).
文摘Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.
文摘Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa lt content is marked-ly affected by groundwater,irratio nal irrigation in artificial oasis.By analyzing the soil moisture,salt content and groundwa-ter table in different areas of old oasis,new oasis and desert in Fukang Oa sis,it is shown that topography and l and use are main factors affecting the change of groundwater table,the redistribution of soil moisture and salt cont ent.When undis-turbed by human,the groundwater tab le rises from mountain to belt of grou nd water spillage,the groundwater t able rises mightily in plain because of the artificial irrigation,and the secondary salinization of soil is very seriou s.In oasis the ground-water table raises compared with that in the natural desert at the same latitude.In old oasis of upper reaches o f river salt has not been concentrated too much in rhizosphere because this area is the belt of groundwater drainage,soil t exture is coarse,the groundwater table is very low,and the salt in soil is drained i nto the groundwater.The new oasis has been the areas of salt accumulation becau se of the artificial irrigation,the salt content in soil is higher than th at in old oasis,so some cultivated fields here had to be thrown out because of the serious s econdary salinization.