Both experimental and mechanical analyses were carded out to investigate the characteristics of thickness distribution for tailor-welded tube (TWT) hydroforming with dissimilar thickness. Then, the effects of weld-s...Both experimental and mechanical analyses were carded out to investigate the characteristics of thickness distribution for tailor-welded tube (TWT) hydroforming with dissimilar thickness. Then, the effects of weld-seam position and thickness difference were also revealed. A multiple-diameter tube was formed to reveal the characteristics and the regularity of thickness distribution during TWT hydroforming. It is indicated that there are obvious fluctuations in thickness distribution though the TWTs have the same expansion ratio. The thinning ratio of thinner tube is bigger than that of thicker tube especially in the zone closed to the weld-seam. The difference in thinning ratio between two tube segments can reach 9%. Consequently, sudden and large fluctuation of thickness appears in the zone nearby the weld-seam. The difference in thinning ratio between thinner and thicker tubes enlarges as the thickness difference increases, but improves as length ratio increases. Different strain states are the main reason to induce nonuniform thickness distribution. The difference in thickness is the main reason to induce different strain states on thinner and thicker tubes.展开更多
In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component sha...In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component shape and the contact friction on the final thickness distribution were investigated in this work by using finite element method on a series of axisymmetric models. It was concluded that shape optimization and friction elimination are required to get uniform thickness distribution, and eventually to improve the mechanical quality of the formed components. The constitutive equation of the Ti-6A1-4V superplastic material was also determined on the basis of experimental data.展开更多
On the basis of paper[1],assuming the logarithm of thickness at arbitrary point on a U-shaped bellows meridian is linear with the logarithm of distance between that point and axis of symmetry,perturbation solutions of...On the basis of paper[1],assuming the logarithm of thickness at arbitrary point on a U-shaped bellows meridian is linear with the logarithm of distance between that point and axis of symmetry,perturbation solutions of the corresponding problems of large axisymmetrical deflection are given.The effects of thickness distribution variation,which result from technology factors,on stiffness of bellows are discussed.展开更多
Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empiric...Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empirical designs. In order to research multi-stage forming further, the effect of forming stages(n) and angle interval between the two adjacent stages(Δα) on thickness distribution was investigated. Firstly, a finite element method(FEM) model of multi-stage incremental forming was established and experimentally verified. Then, based on the proposed simulation model, different strategies were adopted to form a frustum of cone with wall angle of 30° to research the thickness distribution of multi-pass forming. It is proved that the minimum thickness increases largely and the variance of sheet thickness decreases significantly as the value of n grows. Further, with the increase of Δα, the minimum thickness increases initially and then decreases, and the optimal thickness distribution is achieved with Δα of 10°.Additionally, a formula is deduced to estimate the sheet thickness after multi-stage forming and proved to be effective. And the simulation results fit well with the experimental results.展开更多
The polymer spin coating is critical in flexible electronic manufaction and micro-electro-mechanical system(MEMS)devices due to its simple operation, and uniformly coated layers. Some researchers focus on the effect...The polymer spin coating is critical in flexible electronic manufaction and micro-electro-mechanical system(MEMS)devices due to its simple operation, and uniformly coated layers. Some researchers focus on the effects of spin coating parameters such as wafer rotating speed, the viscosity of the coating liquid and solvent evaporation on final film thickness.In this work, the influence of substrate curvature on film thickness distribution is considered. A new parameter which represents the edge bead effect ratio(re) is proposed to investigate the influence factor of edge bead effect. Several operation parameters including the curvature of the substrate and the wafer-spin speed are taken into account to study the effects on the film thickness uniformity and edge-bead ratio. The morphologies and film thickness values of the spin-coated PDMS films under various substrate curvatures and coating speeds are measured with laser confocal microscopy. According to the results, both the convex and concave substrate will help to reduce the edge-bead effect significantly and thin film with better surface morphology can be obtained at high spin speed. Additionally, the relationship between the edge-bead ratio and the thin film thickness is like parabolic curve instead of linear dependence. This work may contribute to the mass production of flexible electronic devices.展开更多
A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal resi...A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed. A new method of calculating inherent strains and longitudinal residual stresses is proposed.展开更多
This study proposes a model for the measurement of microscale liquid film thickness distribution using fluorescence signals.The interfacial conditions between the tool and the workpiece in mechanical machining are imp...This study proposes a model for the measurement of microscale liquid film thickness distribution using fluorescence signals.The interfacial conditions between the tool and the workpiece in mechanical machining are important for understanding these phenomena and mechanisms.In this study,indentation tests with transparent tools were used to observe interfaces;however,it was challenging to obtain the signal from a thin fluorescent liquid film on smooth and steeply inclined surfaces.Therefore,fluorescence-based measurement,such as laser-induced fluorescence,was employed.To measure the absolute thickness of the thin fluorescent film,calibration of the measurement system is necessary.Therefore,a theoretical model was proposed considering the multiple reflections of excitation light and fluorescence at the inclined surface between the indenter and workpiece.By measuring the profile of the surface topography of the indented workpiece and comparing the results with those measured by a surface profiler,the validity of the proposed calibration method and the performance of this measurement system were demonstrated.The measured surface profiles,including scratches of 2–4μm,were in good agreement,demonstrating the validity of the proposed method.展开更多
A total of 71,177 glaciers exist on the Qinghai-Tibet Plateau,according to the Randolph Glacier Inventory(RGI 6.0).Despite their large number,glacier ice thickness data are relatively scarce.This study utilizes digita...A total of 71,177 glaciers exist on the Qinghai-Tibet Plateau,according to the Randolph Glacier Inventory(RGI 6.0).Despite their large number,glacier ice thickness data are relatively scarce.This study utilizes digital elevation model data and ground-penetrating radar thickness measurements to estimate the distribution and variation of ice thickness of the Longbasaba Glacier using Glacier bed Topography(GlabTop),a full-width expansion model,and the Huss and Farinotti(HF)model.Results show that the average absolute deviations of GlabTop,the full-width expansion model,and the HF model are 9.8,15.5,and 10.9 m,respectively,indicating that GlabTop performs the best in simulating glacier thickness distribution.During 1980−2015,the Longbasaba Glacier thinned by an average of 7.9±1.3 m or 0.23±0.04 m/a,and its ice volume shrunk by 0.28±0.04 km3 with an average reduction rate of 0.0081±0.0001 km^3/a.In the investigation period,the area and volume of Longbasaba Lake expanded at rates of 0.12±0.01 km^2/a and 0.0132±0.0018 km3/a,respectively.This proglacial lake could potentially extend up to 5,000 m from the lake dam.展开更多
Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hyd...Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.展开更多
A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workp...A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workpiece.The numerical method relies on an Eulerian-Eulerian technique.Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquidfilm and its distribution are determined using various datafitting algorithms.Finally,the reliability of the pro-posed method is verified by means of experimental tests where the robot posture is changed.The provided cor-relation are intended to support the optimization of spray-based coating applications.展开更多
Deep drawing is one of the most important processes for forming sheet metal parts.It is widely used for mass production of cup shapes in automobile,aerospace and packaging industries.Cup drawing,besides its importance...Deep drawing is one of the most important processes for forming sheet metal parts.It is widely used for mass production of cup shapes in automobile,aerospace and packaging industries.Cup drawing,besides its importance as forming process,also serves as a basic test for the sheet metal formability.The effect of equipment and tooling parameters results in complex deformation mechanism.Existence of thickness variation in the formed part may cause stress concentration and may lead to acceleration of damage.Using TAGUCHI's signal-to-noise ratio,it is determined that the die shoulder radius has major influence followed by blank holder force and punch nose radius on the thickness distribution of the deep drawn cup of AA 6061 sheet.The optimum levels of the above three factors,for the most even wall thickness distribution,are found to be punch nose radius of 3 mm,die shoulder radius of 8 mm and blank holder force of 4 kN.展开更多
This study develops a method for the full-size structural design of blade,involving the optimal layer thickness configuration of the blade to maximize its bending stiffness using a genetic algorithm.Numerical differen...This study develops a method for the full-size structural design of blade,involving the optimal layer thickness configuration of the blade to maximize its bending stiffness using a genetic algorithm.Numerical differentiation is employed to solve the sensitivity of blade modal frequency to the layer thickness of each part of blade.The natural frequencies of first-order flapwise and edgewise modes are selected as the optimal objectives.Based on the modal sensitivity analysis of all design variables,the effect of discretized layer thickness on bending stiffness of the blade is explored,and 14 significant design variables are filtered to drive the structural optimization.The best solution predicts an increase in natural frequencies of first-order flapwise and edgewise blade modes by up to 12%and 10.4%,respectively.The results show that the structural optimization method based on modal sensitivity is more effective to improve the structural performance.展开更多
Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering metho...Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering method is introduced into the steel rolling field and used in the patterns recognition of transversal distribution of the steel strip thickness. The well-known k-means clustering algorithm has the advantage of being easily completed, but still has some drawbacks. An improved k-means clustering algorithm is presented, and the main improvements include: (1) the initial clustering points are preselected according to the density queue of data objects; and (2) Mahalanobis distance is applied instead of Euclidean distance in the actual application. Compared to the patterns obtained from the common kmeans algorithm, the patterns identified by the improved algorithm show that the improved clustering algorithm is well suitable for the patterns' recognition of transversal distribution of steel strip thickness and it will be useful in online quality control system.展开更多
An experiment was conducted on hydroforming a double-diameter aluminum alloy tubular part.The influence of loading paths,i.e.the relation between internal pressure and axial feeding,on the forming results was emphasiz...An experiment was conducted on hydroforming a double-diameter aluminum alloy tubular part.The influence of loading paths,i.e.the relation between internal pressure and axial feeding,on the forming results was emphasized with fixed total axial feeding length.The loading paths were analyzed together with the corresponding diagram of stress and strain.Two kinds of bursting phenomenon occurred in the experiment.Sound part can be formed whether there are wrinkles or not.It is indicated by the experiment results that the loading path has great effect on the distribution of material during axial feeding.The thickness distribution is more even for the part formed with wrinkles than that without wrinkles.展开更多
Objective: To investigate the effects of corneal thickness distribution and apex position on postoperative refractive status after full-bed deep anterior lamellar keratoplasty (FBDALK). Methods: This is a retrospe...Objective: To investigate the effects of corneal thickness distribution and apex position on postoperative refractive status after full-bed deep anterior lamellar keratoplasty (FBDALK). Methods: This is a retrospective analysis of patients who were diagnosed with advanced keratoconus between 2011 and 2014 in our hospital. The base of the cone in all patients did not exceed the central cornea at a 6-mm range. The FBDALK was performed by a same surgeon. All patients had a complete corneal suture removal and the follow-up records were intact. Patients who had graft-bed misalignment or who were complicated with a cataract or glaucoma were excluded. Uncorrected visual acuity (UCVA), best spectacle corrected visual acuity (BSCVA), and Pentacam examination data were recorded at two years postoperatively. The recorded data included the superior-inferior (S-I) and nasal-temporal (N-T) corneal thickness differences in 2, 4, 6, and 8 mm diameter concentric circles with the corneal apex as the center (S-I2 mm, S-14 mm, S-I6mm,, S-I8mm, N-T2mm, N-T4 mm, N-T6 mm, and N-T8 mm), the linear, X-axis, and Y-axis distance between the corneal pupillary center and the cornea apex, total corneal astigmatism at a zone of 3 mm diameter from the corneal apex (TA3 mm), the astigmatic vector values J0 and J4s, and the corneal total higher-order aberration for 3 and 6 mm pupil diameters (HOA3 mm and HOA6mm). Statistical analysis was performed by SPSS 15.0. Results: A total of 47 eyes of 46 patients met the criteria and were included in this study. The mean follow-up time was (28±7) months. The mean UCVA was 0.45±0.23 (IogMAR) (MAR: minimum angle of resolution) and the mean BSCVA was 0.19±0.15 (IogMAR), which were all sig- nificantly positively correlated with postoperative TA3 mm and HOA3 turn. The mean S-I corneal thickness differences were (44.62±37.74) IJm, and the mean N-T was (38.57±32.29) pm. S-12 mm was significantly positively correlated with J0 (r=0.31), J45 (r=0.42), HOA3 mm (r=0.37), and HOA6 mm (r=0.48). S-14 mm and S-Is mm were significantly positively corre- lated with HOA3 mm (t=0.30, t=0.40) and HOA6 mm (r=0.46, r=0.35). The X-axis distance between corneal pupillary center and corneal apex was significantly positively correlated with J45 (r=0.29). Conclusions: In patients with ad- vanced keratoconus after FBDALK, the unevenly distributed thickness at corneal pupillary area and the misalignment of corneal apex and pupillary center might cause significant regular and irregular astigmatism, which affected the postoperative visual quality.展开更多
The comers with small radii on cross sections are crucial for forming hydroformed components with polygonal sections. In this paper, warm hydroforming experiments of AZ61A magnesium alloy tubes were cartied out to stu...The comers with small radii on cross sections are crucial for forming hydroformed components with polygonal sections. In this paper, warm hydroforming experiments of AZ61A magnesium alloy tubes were cartied out to study the forming regularity of round comers by using a demonstration part with square sections. Effects of temperature on radius forming, thinning ratio distribution and microstructure were revealed and a component with relative outer corner radius of 3.0 was obtained by warm hydroforming at 240℃. The minimum thickness of the formed square section was located in the transition position between the corner and the straight wall. The thinning ratio of the round corner increased with the increase of forming temperature. Fotmability of the magnesium tube was improved by raising temperature under the effect of dynamic recrystallization at 240℃.展开更多
Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through...Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.展开更多
The southern uplift of the Qiongdongnan Basin is a deepwater area in which no wells have beens drilled. The Miocene-Quaternary strata in the Xisha Islands, which are located 40–100 km to the south, are composed of ca...The southern uplift of the Qiongdongnan Basin is a deepwater area in which no wells have beens drilled. The Miocene-Quaternary strata in the Xisha Islands, which are located 40–100 km to the south, are composed of carbonate reef formations. Paleotectonic and paleogeographic analyses of the basin suggest that the southern uplift experienced favorable geological conditions for the development of carbonate reefs during the Miocene.The high-impedance carbonates have high amplitudes and low frequencies on seismic profiles. The reefs are distributed on paleotectonic highs and are thicker than the contemporaneous formations. A forward model of the variation in carbonate thickness based on lithological and velocity information from wells in nearby regions can simulate the seismic response of carbonates with different thicknesses. We identified several important controlling points for determining the thickness of carbonates from seismic profiles, including the pinchout point,the λ/4 thickness point, and the λ/2 thickness point. We depict a carbonate thickness map in the deepwater area of the southern Qiongdongnan Basin based on this model. The carbonate thickness map, the paleotectonic and paleogeographic background, and the seismic response characteristics of reefs suggest that the carbonates that developed on the southern uplift of the Qiongdongnan Basin during the Miocene were mainly an isolated carbonate platform peninsula and ramp deposits. It consisted of gentle ramp platform, steep slope platform,platform depression, gravity flow, and reef bank facies.展开更多
In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition di...In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition distribution for a multicomponent film and eventually leading to low device quality and low rate of final products. We present a novel method based on PLD for depositing large CIGS films with uni- form thickness and stoichiometry. By oscillating a mirror placed coaxially with the incident laser beam, the laser's focus is scanned across the rotating target surface. This arrangement maintains a constant re- flectance and optical distance, ensuring that a consistent energy density is delivered to the target surface by each laser pulse. Scanning the laser spot across the target suppresses the formation of micro-columns, and thus the plume deflection effect that reduces film uniformity in conventional PLD technique is eliminated. This coaxial scanning PLD method is used to deposit a CIGS film, 500 nm thick, with thickness uniformity exceeding ±3% within a 5 cm diameter, and exhibiting a highly homogeneous elemental distribution.展开更多
This study aims at investigating the impact of using the Magnetorheological Elastomers(MREs)medium to improve the formability of T-shaped Inconel 718 tubes during the bulging process.Besides,the influence of the punch...This study aims at investigating the impact of using the Magnetorheological Elastomers(MREs)medium to improve the formability of T-shaped Inconel 718 tubes during the bulging process.Besides,the influence of the punch size and the intensity of the magnetic field on the branch height and wall thickness distribution of the T-shaped Inconel 718 tubes are also explored.The results showed that the parts formed by the punch with a length of 5 mm in the pressurization zone have better forming quality.The external magnetic field can promote a high branch,and by increasing the intensity of the magnetic field,the branch height was increased and then decreased.At the same time,the magnetic field reduced the amount of material accumulation between the guiding zone and the bulging zone.Besides,it promotes the material in the guiding zone to enter the bulging zone and improve the bulging ability of the T-shaped tube.展开更多
基金Projects(51005054, 50575051) supported by the National Natural Science Foundation of ChinaProject(HIT.BRETI.2010010) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(20100471025) supported by the National Science Foundation for Post-doctoral Scientists of China
文摘Both experimental and mechanical analyses were carded out to investigate the characteristics of thickness distribution for tailor-welded tube (TWT) hydroforming with dissimilar thickness. Then, the effects of weld-seam position and thickness difference were also revealed. A multiple-diameter tube was formed to reveal the characteristics and the regularity of thickness distribution during TWT hydroforming. It is indicated that there are obvious fluctuations in thickness distribution though the TWTs have the same expansion ratio. The thinning ratio of thinner tube is bigger than that of thicker tube especially in the zone closed to the weld-seam. The difference in thinning ratio between two tube segments can reach 9%. Consequently, sudden and large fluctuation of thickness appears in the zone nearby the weld-seam. The difference in thinning ratio between thinner and thicker tubes enlarges as the thickness difference increases, but improves as length ratio increases. Different strain states are the main reason to induce nonuniform thickness distribution. The difference in thickness is the main reason to induce different strain states on thinner and thicker tubes.
基金Project supported by the National Natural Science Foundation of China (No. 50477030), and the Scientific Research Foundation for ROCS, State Education Ministry, China
文摘In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component shape and the contact friction on the final thickness distribution were investigated in this work by using finite element method on a series of axisymmetric models. It was concluded that shape optimization and friction elimination are required to get uniform thickness distribution, and eventually to improve the mechanical quality of the formed components. The constitutive equation of the Ti-6A1-4V superplastic material was also determined on the basis of experimental data.
文摘On the basis of paper[1],assuming the logarithm of thickness at arbitrary point on a U-shaped bellows meridian is linear with the logarithm of distance between that point and axis of symmetry,perturbation solutions of the corresponding problems of large axisymmetrical deflection are given.The effects of thickness distribution variation,which result from technology factors,on stiffness of bellows are discussed.
基金Project(51005258) supported by the National Natural Science Foundation of ChinaProject(CDJZR12130065) supported by the Fundamental Research Funds for the Central Universities,China
文摘Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empirical designs. In order to research multi-stage forming further, the effect of forming stages(n) and angle interval between the two adjacent stages(Δα) on thickness distribution was investigated. Firstly, a finite element method(FEM) model of multi-stage incremental forming was established and experimentally verified. Then, based on the proposed simulation model, different strategies were adopted to form a frustum of cone with wall angle of 30° to research the thickness distribution of multi-pass forming. It is proved that the minimum thickness increases largely and the variance of sheet thickness decreases significantly as the value of n grows. Further, with the increase of Δα, the minimum thickness increases initially and then decreases, and the optimal thickness distribution is achieved with Δα of 10°.Additionally, a formula is deduced to estimate the sheet thickness after multi-stage forming and proved to be effective. And the simulation results fit well with the experimental results.
基金supported by the National Natural Science Foundation of China(Grant Nos.51605079 and 51475076)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51621064)the China Postdoctoral Science Foundation(Grant No.2016M591424)
文摘The polymer spin coating is critical in flexible electronic manufaction and micro-electro-mechanical system(MEMS)devices due to its simple operation, and uniformly coated layers. Some researchers focus on the effects of spin coating parameters such as wafer rotating speed, the viscosity of the coating liquid and solvent evaporation on final film thickness.In this work, the influence of substrate curvature on film thickness distribution is considered. A new parameter which represents the edge bead effect ratio(re) is proposed to investigate the influence factor of edge bead effect. Several operation parameters including the curvature of the substrate and the wafer-spin speed are taken into account to study the effects on the film thickness uniformity and edge-bead ratio. The morphologies and film thickness values of the spin-coated PDMS films under various substrate curvatures and coating speeds are measured with laser confocal microscopy. According to the results, both the convex and concave substrate will help to reduce the edge-bead effect significantly and thin film with better surface morphology can be obtained at high spin speed. Additionally, the relationship between the edge-bead ratio and the thin film thickness is like parabolic curve instead of linear dependence. This work may contribute to the mass production of flexible electronic devices.
文摘A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed. A new method of calculating inherent strains and longitudinal residual stresses is proposed.
基金would like to thank JSPS KAKENHI(No.23H01313)Machine Tool Engineering Foundation(No.RU-18),The Die and Mould Technology Promotion Foundation and The SATOMI Scholarship Foundation to provide financial support to this research.
文摘This study proposes a model for the measurement of microscale liquid film thickness distribution using fluorescence signals.The interfacial conditions between the tool and the workpiece in mechanical machining are important for understanding these phenomena and mechanisms.In this study,indentation tests with transparent tools were used to observe interfaces;however,it was challenging to obtain the signal from a thin fluorescent liquid film on smooth and steeply inclined surfaces.Therefore,fluorescence-based measurement,such as laser-induced fluorescence,was employed.To measure the absolute thickness of the thin fluorescent film,calibration of the measurement system is necessary.Therefore,a theoretical model was proposed considering the multiple reflections of excitation light and fluorescence at the inclined surface between the indenter and workpiece.By measuring the profile of the surface topography of the indented workpiece and comparing the results with those measured by a surface profiler,the validity of the proposed calibration method and the performance of this measurement system were demonstrated.The measured surface profiles,including scratches of 2–4μm,were in good agreement,demonstrating the validity of the proposed method.
基金The work was funded by the National Natural Science Foundation of China(No.41701061,No.41761144075,No.41771075,and No.41271091).
文摘A total of 71,177 glaciers exist on the Qinghai-Tibet Plateau,according to the Randolph Glacier Inventory(RGI 6.0).Despite their large number,glacier ice thickness data are relatively scarce.This study utilizes digital elevation model data and ground-penetrating radar thickness measurements to estimate the distribution and variation of ice thickness of the Longbasaba Glacier using Glacier bed Topography(GlabTop),a full-width expansion model,and the Huss and Farinotti(HF)model.Results show that the average absolute deviations of GlabTop,the full-width expansion model,and the HF model are 9.8,15.5,and 10.9 m,respectively,indicating that GlabTop performs the best in simulating glacier thickness distribution.During 1980−2015,the Longbasaba Glacier thinned by an average of 7.9±1.3 m or 0.23±0.04 m/a,and its ice volume shrunk by 0.28±0.04 km3 with an average reduction rate of 0.0081±0.0001 km^3/a.In the investigation period,the area and volume of Longbasaba Lake expanded at rates of 0.12±0.01 km^2/a and 0.0132±0.0018 km3/a,respectively.This proglacial lake could potentially extend up to 5,000 m from the lake dam.
基金Natural Science Foundation of China(Grant No.81960332)Guangxi Provincial Innovation driven Development Project(Grant No.GKAA17204062)+1 种基金Guangxi Provincial Natural Science Foundation(Grant No.2016GXNSFAA380211)Liuzhou Municipal Scientific Research and Technology Development Plan(Grant No.2016C050203)。
文摘Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.
基金This work was supported in part by the National Natural Science Foundation of China(51405418)in part by the Major Program of Natural Science Foundation of Colleges and Universities in Jiangsu Province(18KJA460009)+2 种基金in part by the Jiangsu“Qing Lan Project”Talent Project(2021)Major Projects of Natural Science Research in Jiangsu Higher Education Institutions(Grant No.21KJA460009)General Program of Jiangsu University Natural Science Foundation(22KJD460009).
文摘A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workpiece.The numerical method relies on an Eulerian-Eulerian technique.Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquidfilm and its distribution are determined using various datafitting algorithms.Finally,the reliability of the pro-posed method is verified by means of experimental tests where the robot posture is changed.The provided cor-relation are intended to support the optimization of spray-based coating applications.
文摘Deep drawing is one of the most important processes for forming sheet metal parts.It is widely used for mass production of cup shapes in automobile,aerospace and packaging industries.Cup drawing,besides its importance as forming process,also serves as a basic test for the sheet metal formability.The effect of equipment and tooling parameters results in complex deformation mechanism.Existence of thickness variation in the formed part may cause stress concentration and may lead to acceleration of damage.Using TAGUCHI's signal-to-noise ratio,it is determined that the die shoulder radius has major influence followed by blank holder force and punch nose radius on the thickness distribution of the deep drawn cup of AA 6061 sheet.The optimum levels of the above three factors,for the most even wall thickness distribution,are found to be punch nose radius of 3 mm,die shoulder radius of 8 mm and blank holder force of 4 kN.
基金supported by the National Natural Science Foundation of China(Nos.51965034,51565028)the Lanzhou City Innovation and Entrepreneurship Project(No.2018-RC-25)。
文摘This study develops a method for the full-size structural design of blade,involving the optimal layer thickness configuration of the blade to maximize its bending stiffness using a genetic algorithm.Numerical differentiation is employed to solve the sensitivity of blade modal frequency to the layer thickness of each part of blade.The natural frequencies of first-order flapwise and edgewise modes are selected as the optimal objectives.Based on the modal sensitivity analysis of all design variables,the effect of discretized layer thickness on bending stiffness of the blade is explored,and 14 significant design variables are filtered to drive the structural optimization.The best solution predicts an increase in natural frequencies of first-order flapwise and edgewise blade modes by up to 12%and 10.4%,respectively.The results show that the structural optimization method based on modal sensitivity is more effective to improve the structural performance.
基金Sponsored by National Natural Science Foundation of China(50705057)
文摘Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering method is introduced into the steel rolling field and used in the patterns recognition of transversal distribution of the steel strip thickness. The well-known k-means clustering algorithm has the advantage of being easily completed, but still has some drawbacks. An improved k-means clustering algorithm is presented, and the main improvements include: (1) the initial clustering points are preselected according to the density queue of data objects; and (2) Mahalanobis distance is applied instead of Euclidean distance in the actual application. Compared to the patterns obtained from the common kmeans algorithm, the patterns identified by the improved algorithm show that the improved clustering algorithm is well suitable for the patterns' recognition of transversal distribution of steel strip thickness and it will be useful in online quality control system.
基金This work is financially supported by the National Natural Science Fund for Distinguished Young Scholars ( No 50525516)the Specialized Research Fund for the Doctoral Program of Higher Edu-cation (No 20050213041)
文摘An experiment was conducted on hydroforming a double-diameter aluminum alloy tubular part.The influence of loading paths,i.e.the relation between internal pressure and axial feeding,on the forming results was emphasized with fixed total axial feeding length.The loading paths were analyzed together with the corresponding diagram of stress and strain.Two kinds of bursting phenomenon occurred in the experiment.Sound part can be formed whether there are wrinkles or not.It is indicated by the experiment results that the loading path has great effect on the distribution of material during axial feeding.The thickness distribution is more even for the part formed with wrinkles than that without wrinkles.
基金Project supported by the Medical Scientific Research Foundation of Zhejiang Province(No.2018ZD007),China
文摘Objective: To investigate the effects of corneal thickness distribution and apex position on postoperative refractive status after full-bed deep anterior lamellar keratoplasty (FBDALK). Methods: This is a retrospective analysis of patients who were diagnosed with advanced keratoconus between 2011 and 2014 in our hospital. The base of the cone in all patients did not exceed the central cornea at a 6-mm range. The FBDALK was performed by a same surgeon. All patients had a complete corneal suture removal and the follow-up records were intact. Patients who had graft-bed misalignment or who were complicated with a cataract or glaucoma were excluded. Uncorrected visual acuity (UCVA), best spectacle corrected visual acuity (BSCVA), and Pentacam examination data were recorded at two years postoperatively. The recorded data included the superior-inferior (S-I) and nasal-temporal (N-T) corneal thickness differences in 2, 4, 6, and 8 mm diameter concentric circles with the corneal apex as the center (S-I2 mm, S-14 mm, S-I6mm,, S-I8mm, N-T2mm, N-T4 mm, N-T6 mm, and N-T8 mm), the linear, X-axis, and Y-axis distance between the corneal pupillary center and the cornea apex, total corneal astigmatism at a zone of 3 mm diameter from the corneal apex (TA3 mm), the astigmatic vector values J0 and J4s, and the corneal total higher-order aberration for 3 and 6 mm pupil diameters (HOA3 mm and HOA6mm). Statistical analysis was performed by SPSS 15.0. Results: A total of 47 eyes of 46 patients met the criteria and were included in this study. The mean follow-up time was (28±7) months. The mean UCVA was 0.45±0.23 (IogMAR) (MAR: minimum angle of resolution) and the mean BSCVA was 0.19±0.15 (IogMAR), which were all sig- nificantly positively correlated with postoperative TA3 mm and HOA3 turn. The mean S-I corneal thickness differences were (44.62±37.74) IJm, and the mean N-T was (38.57±32.29) pm. S-12 mm was significantly positively correlated with J0 (r=0.31), J45 (r=0.42), HOA3 mm (r=0.37), and HOA6 mm (r=0.48). S-14 mm and S-Is mm were significantly positively corre- lated with HOA3 mm (t=0.30, t=0.40) and HOA6 mm (r=0.46, r=0.35). The X-axis distance between corneal pupillary center and corneal apex was significantly positively correlated with J45 (r=0.29). Conclusions: In patients with ad- vanced keratoconus after FBDALK, the unevenly distributed thickness at corneal pupillary area and the misalignment of corneal apex and pupillary center might cause significant regular and irregular astigmatism, which affected the postoperative visual quality.
基金Sponsored by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No. 50525516)the National Key Technology R&D Program (Grant No. 2006BAE04B03)Program for New Century Excellent Talents in University
文摘The comers with small radii on cross sections are crucial for forming hydroformed components with polygonal sections. In this paper, warm hydroforming experiments of AZ61A magnesium alloy tubes were cartied out to study the forming regularity of round comers by using a demonstration part with square sections. Effects of temperature on radius forming, thinning ratio distribution and microstructure were revealed and a component with relative outer corner radius of 3.0 was obtained by warm hydroforming at 240℃. The minimum thickness of the formed square section was located in the transition position between the corner and the straight wall. The thinning ratio of the round corner increased with the increase of forming temperature. Fotmability of the magnesium tube was improved by raising temperature under the effect of dynamic recrystallization at 240℃.
基金Project(11102163)supported by the National Natural Science Foundation of ChinaProjects(JC20110218,JC20110260)supported by Foundation for Fundamental Research of Northwestern Polytechnical University,China
文摘Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-006-02the National Natural Science Foundation of China under contract No.41390451
文摘The southern uplift of the Qiongdongnan Basin is a deepwater area in which no wells have beens drilled. The Miocene-Quaternary strata in the Xisha Islands, which are located 40–100 km to the south, are composed of carbonate reef formations. Paleotectonic and paleogeographic analyses of the basin suggest that the southern uplift experienced favorable geological conditions for the development of carbonate reefs during the Miocene.The high-impedance carbonates have high amplitudes and low frequencies on seismic profiles. The reefs are distributed on paleotectonic highs and are thicker than the contemporaneous formations. A forward model of the variation in carbonate thickness based on lithological and velocity information from wells in nearby regions can simulate the seismic response of carbonates with different thicknesses. We identified several important controlling points for determining the thickness of carbonates from seismic profiles, including the pinchout point,the λ/4 thickness point, and the λ/2 thickness point. We depict a carbonate thickness map in the deepwater area of the southern Qiongdongnan Basin based on this model. The carbonate thickness map, the paleotectonic and paleogeographic background, and the seismic response characteristics of reefs suggest that the carbonates that developed on the southern uplift of the Qiongdongnan Basin during the Miocene were mainly an isolated carbonate platform peninsula and ramp deposits. It consisted of gentle ramp platform, steep slope platform,platform depression, gravity flow, and reef bank facies.
基金supported by the Shenzhen Basic Research Project of Science and Technology under Grant No.JCYJ20120613112423982
文摘In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition distribution for a multicomponent film and eventually leading to low device quality and low rate of final products. We present a novel method based on PLD for depositing large CIGS films with uni- form thickness and stoichiometry. By oscillating a mirror placed coaxially with the incident laser beam, the laser's focus is scanned across the rotating target surface. This arrangement maintains a constant re- flectance and optical distance, ensuring that a consistent energy density is delivered to the target surface by each laser pulse. Scanning the laser spot across the target suppresses the formation of micro-columns, and thus the plume deflection effect that reduces film uniformity in conventional PLD technique is eliminated. This coaxial scanning PLD method is used to deposit a CIGS film, 500 nm thick, with thickness uniformity exceeding ±3% within a 5 cm diameter, and exhibiting a highly homogeneous elemental distribution.
基金supported by the Key Program of the National Natural Foundation of China(No.U1937206)Jiangsu Province Key Research and Development Project(No.BE2019007-2)+2 种基金Opening Project of Jiangsu Key Laboratory of Advanced Structural MaterialsApplication Technology(No.ASMA201903)Basic scientific research operating expenses(No.NT2020015).
文摘This study aims at investigating the impact of using the Magnetorheological Elastomers(MREs)medium to improve the formability of T-shaped Inconel 718 tubes during the bulging process.Besides,the influence of the punch size and the intensity of the magnetic field on the branch height and wall thickness distribution of the T-shaped Inconel 718 tubes are also explored.The results showed that the parts formed by the punch with a length of 5 mm in the pressurization zone have better forming quality.The external magnetic field can promote a high branch,and by increasing the intensity of the magnetic field,the branch height was increased and then decreased.At the same time,the magnetic field reduced the amount of material accumulation between the guiding zone and the bulging zone.Besides,it promotes the material in the guiding zone to enter the bulging zone and improve the bulging ability of the T-shaped tube.