With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p...With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.展开更多
In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of average degree of edge vertices of China aviation network w...In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of average degree of edge vertices of China aviation network were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the average degrees of edge vertices in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the average degree of edge vertices had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace.展开更多
In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were s...In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the ratio of edge vertices degree in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the ratio of edge vertices degree had linear probability distribution and the two parameters of the probability distribution had linear evolution trace.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
The low efficiency and high cost of fresh agricultural product terminal distribution directly restrict the operation of the entire supply network.To reduce costs and optimize the distribution network,we construct a mi...The low efficiency and high cost of fresh agricultural product terminal distribution directly restrict the operation of the entire supply network.To reduce costs and optimize the distribution network,we construct a mixed integer programmingmodel that comprehensively considers tominimize fixed,transportation,fresh-keeping,time,carbon emissions,and performance incentive costs.We analyzed the performance of traditional rider distribution and robot distribution modes in detail.In addition,the uncertainty of the actual market demand poses a huge threat to the stability of the terminal distribution network.In order to resist uncertain interference,we further extend the model to a robust counterpart form.The results of the simulation show that the instability of random parameters will lead to an increase in the cost.Compared with the traditional rider distribution mode,the robot distribution mode can save 12.7%on logistics costs,and the distribution efficiency is higher.Our research can provide support for the design of planning schemes for transportation enterprise managers.展开更多
The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and t...The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.展开更多
During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in unc...During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.展开更多
In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba...In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.展开更多
In recent years,the large-scale grid connection of various distributed power sources has made the planning and operation of distribution grids increasingly complex.Consequently,a large number of active distribution ne...In recent years,the large-scale grid connection of various distributed power sources has made the planning and operation of distribution grids increasingly complex.Consequently,a large number of active distribution network reconfiguration techniques have emerged to reduce system losses,improve system safety,and enhance power quality via switching switches to change the system topology while ensuring the radial structure of the network.While scholars have previously reviewed these methods,they all have obvious shortcomings,such as a lack of systematic integration of methods,vague classification,lack of constructive suggestions for future study,etc.Therefore,this paper attempts to provide a comprehensive and profound review of 52 methods and applications of active distribution network reconfiguration through systematic method classification and enumeration.Specifically,these methods are classified into five categories,i.e.,traditional methods,mathematical methods,meta-heuristic algorithms,machine learning methods,and hybrid methods.A thorough comparison of the various methods is also scored in terms of their practicality,complexity,number of switching actions,performance improvement,advantages,and disadvantages.Finally,four summaries and four future research prospects are presented.In summary,this paper aims to provide an up-to-date and well-rounded manual for subsequent researchers and scholars engaged in related fields.展开更多
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim...The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.展开更多
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of...Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.展开更多
The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current ...The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current instability, voltage drops, and repetitive outages. This work is part of the search for the stability of the electrical distribution network by focusing on the audit of the DJEGBE mini photovoltaic solar power plant electrical network in the commune of OUESSE (Benin). This aims to highlight malfunctions on the low-voltage network to propose solutions for improving current stability among subscribers. Irregularities were noted, notably the overloading of certain lines of the PV network, implying poor distribution of loads by phase, which is the main cause of voltage drops;repetitive outages linked to overvoltage caused by lightning and overcurrent due to overload;faulty meters, absence of earth connection at subscribers. Peaks in consumption were obtained at night, which shows that consumption is greater in the evening. We examined the existing situation and processed the data collected, then simulated the energy consumption profiles with the network analyzer “LANGLOIS 6830” and “Excel”. The power factor value recorded is an average of 1, and the minimum value is 0.85. The daily output is 131.08 kWh, for a daily demand of 120 kWh and the average daily consumption is 109.92 kWh, or 83.86% of the energy produced per day. These results showed that the dysfunctions are linked to the distribution and the use of produced energy. Finally, we proposed possible solutions for improving the electrical distribution network. Thus, measures without investment and those requiring investment have been proposed.展开更多
The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network...The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network.In order to enhance the safety and reliability of power distribution,this paper focuses on the analysis of faults in the 10kV distribution network caused by natural factors,operational factors,human factors,and equipment factors.It elucidates the various hazards resulting from distribution network faults and proposes corresponding preventive measures for different types of faults in the 10kV distribution network.The aim is to mitigate or reduce the impact of distribution network faults,ensuring the safe and stable operation of the distribution system.展开更多
By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning...By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.展开更多
In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average...In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average degree values of China aviation network were studied based on the statistics data of China civil aviation network in 1988,1994,2001,2008 and 2015.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network.Based on the statistical data,the arithmetic averages of edge vertices nearest neighbor average degree values of China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Using the probability statistical analysis method,it was found that the arithmetic average of edge vertices nearest neighbor average degree values had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the f...Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the flexible regulation capabilities of distribution stations,amulti-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics,considering different geographical locations,coverage areas,and response capabilities.Firstly,the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed,and a resource regulation capability model is established to quantify the adjustable range of different regulation resources.On this basis,considering the limitations of line transmission capacity,a regulation capability assessment index for distribution stations is proposed to evaluate their regulation capabilities.Secondly,considering different geographical locations and coverage areas,a comprehensive performance index based on electrical distance modularity and active power balance is established,and a cluster division method based on genetic algorithms is proposed to fully leverage the coordination and complementarity among nodes and improve the active power matching degree within clusters.Simultaneously,an economic optimization model with the objective of minimizing the economic cost of the distribution station is established,comprehensively considering the safety constraints of the distribution network and the regulation constraints of resources.This model can provide scientific guidance for the economic dispatch of the distribution station area.Finally,case studies demonstrate that the proposed assessment and optimization methods effectively evaluate the regulation capabilities of distribution stations,facilitate the consumption of distributed photovoltaics,and enhance the economic efficiency of the distribution station area.展开更多
Security Information and Event Management (SIEM) platforms are critical for organizations to monitor and manage their security operations centers. However, organizations using SIEM platforms have several challenges su...Security Information and Event Management (SIEM) platforms are critical for organizations to monitor and manage their security operations centers. However, organizations using SIEM platforms have several challenges such as inefficiency of alert management and integration with real-time communication tools. These challenges cause delays and cost penalties for organizations in their efforts to resolve the alerts and potential security breaches. This paper introduces a cybersecurity Alert Distribution and Response Network (Adrian) system. Adrian introduces a novel enhancement to SIEM platforms by integrating SIEM functionalities with real-time collaboration platforms. Adrian leverages the uniquity of mobile applications of collaboration platforms to provide real-time alerts, enabling a two-way communication channel that facilitates immediate response to security incidents and efficient SIEM platform management. To demonstrate Adrian’s capabilities, we have introduced a case-study that integrates Wazuh, a SIEM platform, to Slack, a collaboration platform. The case study demonstrates all the functionalities of Adrian including the real-time alert distribution, alert customization, alert categorization, and enablement of management activities, thereby increasing the responsiveness and efficiency of Adrian’s capabilities. The study concludes with a discussion on the potential expansion of Adrian’s capabilities including the incorporation of artificial intelligence (AI) for enhanced alert prioritization and response automation.展开更多
The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage...The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.展开更多
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o...Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.展开更多
基金This research is supported by the Science and Technology Program of Gansu Province(No.23JRRA880).
文摘With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.
文摘In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of average degree of edge vertices of China aviation network were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the average degrees of edge vertices in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the average degree of edge vertices had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace.
文摘In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the ratio of edge vertices degree in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the ratio of edge vertices degree had linear probability distribution and the two parameters of the probability distribution had linear evolution trace.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
文摘The low efficiency and high cost of fresh agricultural product terminal distribution directly restrict the operation of the entire supply network.To reduce costs and optimize the distribution network,we construct a mixed integer programmingmodel that comprehensively considers tominimize fixed,transportation,fresh-keeping,time,carbon emissions,and performance incentive costs.We analyzed the performance of traditional rider distribution and robot distribution modes in detail.In addition,the uncertainty of the actual market demand poses a huge threat to the stability of the terminal distribution network.In order to resist uncertain interference,we further extend the model to a robust counterpart form.The results of the simulation show that the instability of random parameters will lead to an increase in the cost.Compared with the traditional rider distribution mode,the robot distribution mode can save 12.7%on logistics costs,and the distribution efficiency is higher.Our research can provide support for the design of planning schemes for transportation enterprise managers.
基金supported by the National Natural Science Foundation of China Youth Fund(12105234)。
文摘The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.
基金This article was supported by the general project“Research on Wind and Photovoltaic Fault Characteristics and Practical Short Circuit Calculation Model”(521820200097)of Jiangxi Electric Power Company.
文摘During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.
基金funding from the National Natural Science Foundation of China(62263014)Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)Science and Technology Commission of Shanghai Municipality(STCSM)Sailing Program(22YF1414400).
文摘In recent years,the large-scale grid connection of various distributed power sources has made the planning and operation of distribution grids increasingly complex.Consequently,a large number of active distribution network reconfiguration techniques have emerged to reduce system losses,improve system safety,and enhance power quality via switching switches to change the system topology while ensuring the radial structure of the network.While scholars have previously reviewed these methods,they all have obvious shortcomings,such as a lack of systematic integration of methods,vague classification,lack of constructive suggestions for future study,etc.Therefore,this paper attempts to provide a comprehensive and profound review of 52 methods and applications of active distribution network reconfiguration through systematic method classification and enumeration.Specifically,these methods are classified into five categories,i.e.,traditional methods,mathematical methods,meta-heuristic algorithms,machine learning methods,and hybrid methods.A thorough comparison of the various methods is also scored in terms of their practicality,complexity,number of switching actions,performance improvement,advantages,and disadvantages.Finally,four summaries and four future research prospects are presented.In summary,this paper aims to provide an up-to-date and well-rounded manual for subsequent researchers and scholars engaged in related fields.
基金the National Natural Science Foundation of China(52177074).
文摘The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.
文摘Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.
文摘The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current instability, voltage drops, and repetitive outages. This work is part of the search for the stability of the electrical distribution network by focusing on the audit of the DJEGBE mini photovoltaic solar power plant electrical network in the commune of OUESSE (Benin). This aims to highlight malfunctions on the low-voltage network to propose solutions for improving current stability among subscribers. Irregularities were noted, notably the overloading of certain lines of the PV network, implying poor distribution of loads by phase, which is the main cause of voltage drops;repetitive outages linked to overvoltage caused by lightning and overcurrent due to overload;faulty meters, absence of earth connection at subscribers. Peaks in consumption were obtained at night, which shows that consumption is greater in the evening. We examined the existing situation and processed the data collected, then simulated the energy consumption profiles with the network analyzer “LANGLOIS 6830” and “Excel”. The power factor value recorded is an average of 1, and the minimum value is 0.85. The daily output is 131.08 kWh, for a daily demand of 120 kWh and the average daily consumption is 109.92 kWh, or 83.86% of the energy produced per day. These results showed that the dysfunctions are linked to the distribution and the use of produced energy. Finally, we proposed possible solutions for improving the electrical distribution network. Thus, measures without investment and those requiring investment have been proposed.
基金Tibet Autonomous Region Natural Fund Key Project(XZ202201ZR0024G)。
文摘The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network.In order to enhance the safety and reliability of power distribution,this paper focuses on the analysis of faults in the 10kV distribution network caused by natural factors,operational factors,human factors,and equipment factors.It elucidates the various hazards resulting from distribution network faults and proposes corresponding preventive measures for different types of faults in the 10kV distribution network.The aim is to mitigate or reduce the impact of distribution network faults,ensuring the safe and stable operation of the distribution system.
基金funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+1 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Central Leading Local Science and Technology Development Fund Project of Wuzhou(No.202201001).
文摘By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.
文摘In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average degree values of China aviation network were studied based on the statistics data of China civil aviation network in 1988,1994,2001,2008 and 2015.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network.Based on the statistical data,the arithmetic averages of edge vertices nearest neighbor average degree values of China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Using the probability statistical analysis method,it was found that the arithmetic average of edge vertices nearest neighbor average degree values had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the flexible regulation capabilities of distribution stations,amulti-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics,considering different geographical locations,coverage areas,and response capabilities.Firstly,the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed,and a resource regulation capability model is established to quantify the adjustable range of different regulation resources.On this basis,considering the limitations of line transmission capacity,a regulation capability assessment index for distribution stations is proposed to evaluate their regulation capabilities.Secondly,considering different geographical locations and coverage areas,a comprehensive performance index based on electrical distance modularity and active power balance is established,and a cluster division method based on genetic algorithms is proposed to fully leverage the coordination and complementarity among nodes and improve the active power matching degree within clusters.Simultaneously,an economic optimization model with the objective of minimizing the economic cost of the distribution station is established,comprehensively considering the safety constraints of the distribution network and the regulation constraints of resources.This model can provide scientific guidance for the economic dispatch of the distribution station area.Finally,case studies demonstrate that the proposed assessment and optimization methods effectively evaluate the regulation capabilities of distribution stations,facilitate the consumption of distributed photovoltaics,and enhance the economic efficiency of the distribution station area.
文摘Security Information and Event Management (SIEM) platforms are critical for organizations to monitor and manage their security operations centers. However, organizations using SIEM platforms have several challenges such as inefficiency of alert management and integration with real-time communication tools. These challenges cause delays and cost penalties for organizations in their efforts to resolve the alerts and potential security breaches. This paper introduces a cybersecurity Alert Distribution and Response Network (Adrian) system. Adrian introduces a novel enhancement to SIEM platforms by integrating SIEM functionalities with real-time collaboration platforms. Adrian leverages the uniquity of mobile applications of collaboration platforms to provide real-time alerts, enabling a two-way communication channel that facilitates immediate response to security incidents and efficient SIEM platform management. To demonstrate Adrian’s capabilities, we have introduced a case-study that integrates Wazuh, a SIEM platform, to Slack, a collaboration platform. The case study demonstrates all the functionalities of Adrian including the real-time alert distribution, alert customization, alert categorization, and enablement of management activities, thereby increasing the responsiveness and efficiency of Adrian’s capabilities. The study concludes with a discussion on the potential expansion of Adrian’s capabilities including the incorporation of artificial intelligence (AI) for enhanced alert prioritization and response automation.
基金supported by the Science and Technology Project of North China Electric Power Research Institute,which is“Research on Key Technologies for Power Quality Evaluation and Improvement of New Distribution Network Based on Collaborative Interaction of Source-Network-Load-Storage”(KJZ2022016).
文摘The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.
基金funded by the Science and Technology Project of China Southern Power Grid(YNKJXM20210175)the National Natural Science Foundation of China(52177070).
文摘Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.