For non-catalytic gas-solid reaction, it is desirable to match the mean residence time (MRT) of particles and complete conversion time (tc) in a fluidized bed. In this study, the MRT differences (MRT ratios) bet...For non-catalytic gas-solid reaction, it is desirable to match the mean residence time (MRT) of particles and complete conversion time (tc) in a fluidized bed. In this study, the MRT differences (MRT ratios) between the coarse particles and the fine particles were investigated in a continuous fluidized bed with a side exit by varying the superficial gas velocity, feed composition and particle size ratio, The results show that the MRT ratio increases firstly and then decreases with increasing the gas velocity. By controlling the gas velocity and the feed composi tion of coarse particles, the MRT ratio can be modulated from 1.8 to 10.5 at the gas velocity of 1.0 m-s -1 for the binary mixture with the size ratio of 2.2. The MRT ratio can reach to - 12 at the gas velocity of 1.2 m. s for the particle size ratio of 3.3. The present study has endeavored to obtain fundamental data for an effective plant operation to meet the need of synchronously complete conversion of particles with different sizes during the film diffusion controlling reaction.展开更多
基金Supported by the China National Funds for Distinguished Young Scientists(21325628)National Natural Science Foundation of China(91334108)the State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences(MPCS-2012-A-02 and MPCS-2014-A-03)
文摘For non-catalytic gas-solid reaction, it is desirable to match the mean residence time (MRT) of particles and complete conversion time (tc) in a fluidized bed. In this study, the MRT differences (MRT ratios) between the coarse particles and the fine particles were investigated in a continuous fluidized bed with a side exit by varying the superficial gas velocity, feed composition and particle size ratio, The results show that the MRT ratio increases firstly and then decreases with increasing the gas velocity. By controlling the gas velocity and the feed composi tion of coarse particles, the MRT ratio can be modulated from 1.8 to 10.5 at the gas velocity of 1.0 m-s -1 for the binary mixture with the size ratio of 2.2. The MRT ratio can reach to - 12 at the gas velocity of 1.2 m. s for the particle size ratio of 3.3. The present study has endeavored to obtain fundamental data for an effective plant operation to meet the need of synchronously complete conversion of particles with different sizes during the film diffusion controlling reaction.