The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
The used water for human consumption must be free of microorganisms and chemicals that cause risk in the human health. In this study, water quality of 18 rural area of Abarkouh was determined and compared the conventi...The used water for human consumption must be free of microorganisms and chemicals that cause risk in the human health. In this study, water quality of 18 rural area of Abarkouh was determined and compared the conventional monitoring method (According to ISIR (Institute of Standards and Industrial Research of Iran), 1053 and 4208) and use of electronic system method (Patent in industrial property general office of Iran, 77815). Free chlorine monitoring and pH test done by health workers in the conventional method and the results will be sent to the Health Network monthly. Sampling for microbiological testing is done monthly based on population (According to ISIR, 4208). On the electronic system, the procedure is also done by health workers, but the result will be sent to the receiver device by using a cell phone. According to the chlorine test results if the free chlorine residual reported zero, microbiological sampling was done by a health expert. Finally, the number of chlorine test and microbiological sampling and the results of these experiments collected in the both methods and recorded in SPSS 22 then were analyzed by using chi-square test and Fisher exact test. The result of microbiological experiments shows that the sampling rate decreased 29% in using of electronic system method in comparison to the conventional monitoring method while the number of microbial defect detection increased 19% in drinking water networks monitoring by electronic system. Using of electronic system monitoring can reduce the rate and cost of microbiological sampling and its experiments and increase accuracy of these tests, in this way it will increase the quality and safety of drinking water in distribution network in small and dispersed rural communities.展开更多
This paper studies the weighted average consensus problem for networks of agents with fixed directed asymmetric unbalance information exchange topology. We suppose that the classical distributed consensus protocol is ...This paper studies the weighted average consensus problem for networks of agents with fixed directed asymmetric unbalance information exchange topology. We suppose that the classical distributed consensus protocol is destroyed by diverse time-delays which include communication time-delay and self time-delay. Based on the generalized Nyquist stability criterion and the Gerschgorin disk theorem, some sufficient conditions for the consensus of multi-agent systems are obtained. And we give the expression of the weighted average consensus value for our consensus protocol. Finally, numerical examples are presented to illustrate the theoretical results.展开更多
Several software network models are constructed based on the relationships between classes in the object-oriented software systems.Then,a variety of well-known open source software applications are statistically analy...Several software network models are constructed based on the relationships between classes in the object-oriented software systems.Then,a variety of well-known open source software applications are statistically analyzed by using these models.The results show that: (1) Dependency network does play a key role in software architecture;(2) The exponents of in-degree and total-degree distribution functions of different networks differ slightly,while the exponent of out-degree varies obviously;(3) Weak-coupling relationships have greater impact on software architecture than strong-coupling relationships.Finally,a theoretically analysis on these statistical phenomena is proposed from the perspectives of software develop technology,develop process and developer’s habits,respectively.展开更多
In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm i...In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm is proposed.The optimization of the power distribution network fault system based on multiagent technology realizes fast recovery of multi-objective fault,solve the problem of network learning and parameter adjustment in the later stage of particle swarm optimization algorithm falling into the local extreme value dilemma,and realize the multi-dimensional nonlinear optimization of the main grid and the auxiliary grid.The system proposed in this study takes power distribution network as the goal,applies fuzzy probability algorithm,simplifies the calculation process,avoids local extreme value,and finally realizes the energy balance between each power grid.Simulation results show that the Multi-Agent Technology enjoys priority in restoring important load,shortening the recovery time of power grid balance,and reducing the overall line loss rate of power grid.Therefore,the power grid fault self-healing system can improve the safety and stability of the important power grid,and reduce the economic loss rate of the whole power grid.展开更多
We address the problem of optimizing a distributed monitoring system and the goal of the optimization is to reduce the cost of deployment of the monitoring infrastructure by identifying a minimum aggregating set subje...We address the problem of optimizing a distributed monitoring system and the goal of the optimization is to reduce the cost of deployment of the monitoring infrastructure by identifying a minimum aggregating set subject to delay constraint on the aggregating path. We show that this problem is NP-hard and propose approximation algorithm proving the approximation ratio with lnm+1, where is the number of monitoring nodes. At last we extend our modal with more constraint of bounded delay variation. Key words network - distributed monitoring - delay constraint - NP-hard CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: LIU Xiang-hui(1973-), male, Ph. D. candidate, research direction: algorithm complexity analysis, QoS in Internet.展开更多
Deep Learning presents a critical capability to be geared into environments being constantly changed and ongoing learning dynamic,which is especially relevant in Network Intrusion Detection.In this paper,as enlightene...Deep Learning presents a critical capability to be geared into environments being constantly changed and ongoing learning dynamic,which is especially relevant in Network Intrusion Detection.In this paper,as enlightened by the theory of Deep Learning Neural Networks,Hierarchy Distributed-Agents Model for Network Risk Evaluation,a newly developed model,is proposed.The architecture taken on by the distributed-agents model are given,as well as the approach of analyzing network intrusion detection using Deep Learning,the mechanism of sharing hyper-parameters to improve the efficiency of learning is presented,and the hierarchical evaluative framework for Network Risk Evaluation of the proposed model is built.Furthermore,to examine the proposed model,a series of experiments were conducted in terms of NSLKDD datasets.The proposed model was able to differentiate between normal and abnormal network activities with an accuracy of 97.60%on NSL-KDD datasets.As the results acquired from the experiment indicate,the model developed in this paper is characterized by high-speed and high-accuracy processing which shall offer a preferable solution with regard to the Risk Evaluation in Network.展开更多
The emergence of a new network architecture,known as Software Defined Networking(SDN),in the last two decades has overcome some drawbacks of traditional networks in terms of performance,scalability,reliability,securit...The emergence of a new network architecture,known as Software Defined Networking(SDN),in the last two decades has overcome some drawbacks of traditional networks in terms of performance,scalability,reliability,security,and network management.However,the SDN is vulnerable to security threats that target its controller,such as low-rate Distributed Denial of Service(DDoS)attacks,The low-rate DDoS attack is one of the most prevalent attacks that poses a severe threat to SDN network security because the controller is a vital architecture component.Therefore,there is an urgent need to propose a detection approach for this type of attack with a high detection rate and low false-positive rates.Thus,this paper proposes an approach to detect low-rate DDoS attacks on the SDN controller by adapting a dynamic threshold.The proposed approach has been evaluated using four simulation scenarios covering a combination of low-rate DDoS attacks against the SDN controller involving(i)a single host attack targeting a single victim;(ii)a single host attack targeting multiple victims;(iii)multiple hosts attack targeting a single victim;and(iv)multiple hosts attack targeting multiple victims.The proposed approach’s average detection rates are 96.65%,91.83%,96.17%,and 95.33%for the above scenarios,respectively;and its average false-positive rates are 3.33%,8.17%,3.83%,and 4.67%for similar scenarios,respectively.The comparison between the proposed approach and two existing approaches showed that it outperformed them in both categories.展开更多
A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with ...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.展开更多
This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor tec...This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness.展开更多
The MACE - a Multi agent based distributed measurement architecture in CORBA environment used to develop intelligent distributed measurement system for remote control and monitoring of instruments over network such as...The MACE - a Multi agent based distributed measurement architecture in CORBA environment used to develop intelligent distributed measurement system for remote control and monitoring of instruments over network such as Internet and Ethernet was proposed. The architecture is characterized by interoperability, collaboration and intelligence by means of CORBA and multi agent technologies. The architecture and exemplifies it by a common project was described.展开更多
Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless senso...Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless sensor networks. The DCS theory rests on the joint sparsity of a multi-signal ensemble. In this paper we propose a new mobile-agent-based Adaptive Data Fusion (ADF) algorithm to determine the minimum number of measurements each node required for perfectly joint reconstruction of multiple signal ensembles. We theoretically show that ADF provides the optimal strategy with as minimum total number of measurements as possible and hence reduces communication cost and network load. Simulation results indicate that ADF enjoys better performance than DCS and mobile-agent-based full data fusion algorithm including reconstruction performance and network energy efficiency.展开更多
The world trend in ship automation is to integrate the monitoring, intelligent control and systematic management of the instruments and equipments both on bridge and in engine room. The paper presents a design scheme ...The world trend in ship automation is to integrate the monitoring, intelligent control and systematic management of the instruments and equipments both on bridge and in engine room. The paper presents a design scheme of the ship integrated monitoring and operating system based on two layers distributed and redundant computer network. The lower layer network is the field bus network connected mainly by CAN bus; the upper one is the PC local network in TCP/IP protocol, which consisted of a database server, monitoring and operating computers, industrial computers and a set of switches. Distributed schemes are fully applied to both software and hardware. This paper specifically describes the composition, software distribution and redundant technology of the upper local network and gives some important sample codes for the implement of the redundant and distributed design. The technologies here have been proved in the many applications and it may be applied to other industrial fields.展开更多
A method for designing real-time distributed controllers of discrete manufacturing systems is presented. The approach held is agent based;the controller strategy is distributed into several interacting agents that ope...A method for designing real-time distributed controllers of discrete manufacturing systems is presented. The approach held is agent based;the controller strategy is distributed into several interacting agents that operate each one on a part of the manufacturing process;these agents may be distributed into several interconnected processors. The proposed method consists of a modelling methodology and software development framework that provides a generic agent architecture and communication facilities supporting the interaction among agents.展开更多
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
文摘The used water for human consumption must be free of microorganisms and chemicals that cause risk in the human health. In this study, water quality of 18 rural area of Abarkouh was determined and compared the conventional monitoring method (According to ISIR (Institute of Standards and Industrial Research of Iran), 1053 and 4208) and use of electronic system method (Patent in industrial property general office of Iran, 77815). Free chlorine monitoring and pH test done by health workers in the conventional method and the results will be sent to the Health Network monthly. Sampling for microbiological testing is done monthly based on population (According to ISIR, 4208). On the electronic system, the procedure is also done by health workers, but the result will be sent to the receiver device by using a cell phone. According to the chlorine test results if the free chlorine residual reported zero, microbiological sampling was done by a health expert. Finally, the number of chlorine test and microbiological sampling and the results of these experiments collected in the both methods and recorded in SPSS 22 then were analyzed by using chi-square test and Fisher exact test. The result of microbiological experiments shows that the sampling rate decreased 29% in using of electronic system method in comparison to the conventional monitoring method while the number of microbial defect detection increased 19% in drinking water networks monitoring by electronic system. Using of electronic system monitoring can reduce the rate and cost of microbiological sampling and its experiments and increase accuracy of these tests, in this way it will increase the quality and safety of drinking water in distribution network in small and dispersed rural communities.
基金supported by the National Natural Science Foundation of China(6127312661363002+3 种基金61374104)the Natural Science Foundation of Guangdong Province(10251064101000008S2012010009675)the Fundamental Research Funds for the Central Universities(2012ZM0059)
文摘This paper studies the weighted average consensus problem for networks of agents with fixed directed asymmetric unbalance information exchange topology. We suppose that the classical distributed consensus protocol is destroyed by diverse time-delays which include communication time-delay and self time-delay. Based on the generalized Nyquist stability criterion and the Gerschgorin disk theorem, some sufficient conditions for the consensus of multi-agent systems are obtained. And we give the expression of the weighted average consensus value for our consensus protocol. Finally, numerical examples are presented to illustrate the theoretical results.
基金The paper is supported by the National High Technology Research and Development Program of China (863 Program) (No.2009AA01Z439) and the National Natural Science Foundation of China (U0835001)
文摘Several software network models are constructed based on the relationships between classes in the object-oriented software systems.Then,a variety of well-known open source software applications are statistically analyzed by using these models.The results show that: (1) Dependency network does play a key role in software architecture;(2) The exponents of in-degree and total-degree distribution functions of different networks differ slightly,while the exponent of out-degree varies obviously;(3) Weak-coupling relationships have greater impact on software architecture than strong-coupling relationships.Finally,a theoretically analysis on these statistical phenomena is proposed from the perspectives of software develop technology,develop process and developer’s habits,respectively.
基金This work is supported by the project of Hebei power technology of state grid from 2018 to 2019:Research and application of real-time situation assessment and visualization(SZKJXM20170445).
文摘In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm is proposed.The optimization of the power distribution network fault system based on multiagent technology realizes fast recovery of multi-objective fault,solve the problem of network learning and parameter adjustment in the later stage of particle swarm optimization algorithm falling into the local extreme value dilemma,and realize the multi-dimensional nonlinear optimization of the main grid and the auxiliary grid.The system proposed in this study takes power distribution network as the goal,applies fuzzy probability algorithm,simplifies the calculation process,avoids local extreme value,and finally realizes the energy balance between each power grid.Simulation results show that the Multi-Agent Technology enjoys priority in restoring important load,shortening the recovery time of power grid balance,and reducing the overall line loss rate of power grid.Therefore,the power grid fault self-healing system can improve the safety and stability of the important power grid,and reduce the economic loss rate of the whole power grid.
文摘We address the problem of optimizing a distributed monitoring system and the goal of the optimization is to reduce the cost of deployment of the monitoring infrastructure by identifying a minimum aggregating set subject to delay constraint on the aggregating path. We show that this problem is NP-hard and propose approximation algorithm proving the approximation ratio with lnm+1, where is the number of monitoring nodes. At last we extend our modal with more constraint of bounded delay variation. Key words network - distributed monitoring - delay constraint - NP-hard CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: LIU Xiang-hui(1973-), male, Ph. D. candidate, research direction: algorithm complexity analysis, QoS in Internet.
基金This work is supported by the National Key Research and Development Program of China under Grant 2016YFB0800600the Natural Science Foundation of China under Grant(No.61872254 and No.U1736212)+2 种基金the Fundamental Research Funds for the central Universities(No.YJ201727,No.A0920502051815-98)Academic and Technical Leaders’Training Support Fund of Sichuan Province(2016)the research projects of the Humanity and Social Science Youth Foundation of Ministry of Education(13YJCZH021).We want to convey our grateful appreciation to the corresponding author of this paper,Gang Liang,who has offered advice with huge values in all stages when writing this essay to us.
文摘Deep Learning presents a critical capability to be geared into environments being constantly changed and ongoing learning dynamic,which is especially relevant in Network Intrusion Detection.In this paper,as enlightened by the theory of Deep Learning Neural Networks,Hierarchy Distributed-Agents Model for Network Risk Evaluation,a newly developed model,is proposed.The architecture taken on by the distributed-agents model are given,as well as the approach of analyzing network intrusion detection using Deep Learning,the mechanism of sharing hyper-parameters to improve the efficiency of learning is presented,and the hierarchical evaluative framework for Network Risk Evaluation of the proposed model is built.Furthermore,to examine the proposed model,a series of experiments were conducted in terms of NSLKDD datasets.The proposed model was able to differentiate between normal and abnormal network activities with an accuracy of 97.60%on NSL-KDD datasets.As the results acquired from the experiment indicate,the model developed in this paper is characterized by high-speed and high-accuracy processing which shall offer a preferable solution with regard to the Risk Evaluation in Network.
基金This work was supported by Universiti Sains Malaysia under external grant(Grant Number 304/PNAV/650958/U154).
文摘The emergence of a new network architecture,known as Software Defined Networking(SDN),in the last two decades has overcome some drawbacks of traditional networks in terms of performance,scalability,reliability,security,and network management.However,the SDN is vulnerable to security threats that target its controller,such as low-rate Distributed Denial of Service(DDoS)attacks,The low-rate DDoS attack is one of the most prevalent attacks that poses a severe threat to SDN network security because the controller is a vital architecture component.Therefore,there is an urgent need to propose a detection approach for this type of attack with a high detection rate and low false-positive rates.Thus,this paper proposes an approach to detect low-rate DDoS attacks on the SDN controller by adapting a dynamic threshold.The proposed approach has been evaluated using four simulation scenarios covering a combination of low-rate DDoS attacks against the SDN controller involving(i)a single host attack targeting a single victim;(ii)a single host attack targeting multiple victims;(iii)multiple hosts attack targeting a single victim;and(iv)multiple hosts attack targeting multiple victims.The proposed approach’s average detection rates are 96.65%,91.83%,96.17%,and 95.33%for the above scenarios,respectively;and its average false-positive rates are 3.33%,8.17%,3.83%,and 4.67%for similar scenarios,respectively.The comparison between the proposed approach and two existing approaches showed that it outperformed them in both categories.
基金Supported by National Natural Science Foundation of China (60874063) and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
基金supported by the National Natural Sciences Foundation of China (60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.
文摘This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness.
文摘The MACE - a Multi agent based distributed measurement architecture in CORBA environment used to develop intelligent distributed measurement system for remote control and monitoring of instruments over network such as Internet and Ethernet was proposed. The architecture is characterized by interoperability, collaboration and intelligence by means of CORBA and multi agent technologies. The architecture and exemplifies it by a common project was described.
文摘Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless sensor networks. The DCS theory rests on the joint sparsity of a multi-signal ensemble. In this paper we propose a new mobile-agent-based Adaptive Data Fusion (ADF) algorithm to determine the minimum number of measurements each node required for perfectly joint reconstruction of multiple signal ensembles. We theoretically show that ADF provides the optimal strategy with as minimum total number of measurements as possible and hence reduces communication cost and network load. Simulation results indicate that ADF enjoys better performance than DCS and mobile-agent-based full data fusion algorithm including reconstruction performance and network energy efficiency.
基金the Special Doctorial Point Fund of National Education Department of China(1999015103),the Doctor Foundation of Liaoning (001057)and the Outstanding Youth Fund of Dalian City(2001122).
文摘The world trend in ship automation is to integrate the monitoring, intelligent control and systematic management of the instruments and equipments both on bridge and in engine room. The paper presents a design scheme of the ship integrated monitoring and operating system based on two layers distributed and redundant computer network. The lower layer network is the field bus network connected mainly by CAN bus; the upper one is the PC local network in TCP/IP protocol, which consisted of a database server, monitoring and operating computers, industrial computers and a set of switches. Distributed schemes are fully applied to both software and hardware. This paper specifically describes the composition, software distribution and redundant technology of the upper local network and gives some important sample codes for the implement of the redundant and distributed design. The technologies here have been proved in the many applications and it may be applied to other industrial fields.
文摘A method for designing real-time distributed controllers of discrete manufacturing systems is presented. The approach held is agent based;the controller strategy is distributed into several interacting agents that operate each one on a part of the manufacturing process;these agents may be distributed into several interconnected processors. The proposed method consists of a modelling methodology and software development framework that provides a generic agent architecture and communication facilities supporting the interaction among agents.