The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Ove...The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity.展开更多
Most hydrodynamic fluidized bed models, including CFD codes, neglect any effects of the plenum chamber volume. Experiments were performed in a 0.13 m ID fluidization column to determine plenum chamber volume effects o...Most hydrodynamic fluidized bed models, including CFD codes, neglect any effects of the plenum chamber volume. Experiments were performed in a 0.13 m ID fluidization column to determine plenum chamber volume effects on fluidized bed hydrodynamics for FCC and glass particles. Two low-pressure-drop distributors were used, one with a single orifice, and the other with 33 orifices and the same total open area as the single orifice. The results show two peaks in the frequency spectra for the single-orifice distributor, one representing bubble eruption at the bed surface and the other of higher frequency corresponding to the bubbling frequency at the distributor. The latter decreased slightly with increasing plenum volume and with increasing bed depth. For the multi-orifice distributor, broad frequency spectra from pressure measurements became narrower and moved towards higher frequency with decreasing plenum volume.展开更多
All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distributi...All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.展开更多
文摘The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity.
基金the Natural Sciences and Engineering Research Council of Canada for supporting this project financially
文摘Most hydrodynamic fluidized bed models, including CFD codes, neglect any effects of the plenum chamber volume. Experiments were performed in a 0.13 m ID fluidization column to determine plenum chamber volume effects on fluidized bed hydrodynamics for FCC and glass particles. Two low-pressure-drop distributors were used, one with a single orifice, and the other with 33 orifices and the same total open area as the single orifice. The results show two peaks in the frequency spectra for the single-orifice distributor, one representing bubble eruption at the bed surface and the other of higher frequency corresponding to the bubbling frequency at the distributor. The latter decreased slightly with increasing plenum volume and with increasing bed depth. For the multi-orifice distributor, broad frequency spectra from pressure measurements became narrower and moved towards higher frequency with decreasing plenum volume.
基金support from the Natural Sciences and Engineering Research Council(NSERC) of Canada
文摘All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.