Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice i...Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.展开更多
Use of district heating and cooling systems has many environmental advantages compared to individual heating and cooling. Recent advances in solar energy technologies for heat and power generation have reduced their c...Use of district heating and cooling systems has many environmental advantages compared to individual heating and cooling. Recent advances in solar energy technologies for heat and power generation have reduced their cost and promoted their use instead of fossil fuels. Solar-PV energy for electricity generation and solar thermal energy for hot water production are broadly used today. Solar energy resources in the Mediterranean region are abundant while space cooling in buildings is required when solar irradiance is high. The possibility of using solar energy for fuelling water chillers providing cold water in district cooling systems in the Mediterranean basin has been investigated. Existing literature and studies concerning the use of district cooling systems globally as well as the energy sources used in them have been examined. Solar-PV energy combined with compression chillers and solar thermal energy combined with thermally driven chillers can be used for cold water production. Their overall efficiencies, converting solar energy to cold water, vary between 22% and 56% compared with 45% for compression chillers using grid electricity. It is concluded that various solar energy technologies could be used with different types of water chillers for fuelling district cooling networks in the future in the Mediterranean region.展开更多
In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of r...In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of residential buildings and Model B of schools and hospitals were used to estimate the daily cooling load profile in Makkah, Saudi Arabia at latitude of 21.42°N and longitude of 39.83°E. Model A was constructed from common materials, but Model B as Model A with 5 - 8 cm thermal insulation and double layers glass windows. The average data of Makkah weather through 2010, 2011 and 2012 were used to calculate the cooling load profile and performance of air conditioning systems. The maximum cooling load was calculated at 15:00 o’clock for a main floor building to a 40-floor of residential building and to 5 floors of schools. A district cooling plant of 180,000 Refrigeration Ton was suggested to serve the Gabal Al Sharashf area in the central zone of Makkah. A thermal storage system to store the excess cooling capacity was used. Air cooled condensers were used in the analysis of chiller refrigeration cycle. The operating cost was mainly a function of electrical energy consumption. Fixed electricity tariff was 0.04 $/kWh for electromechanical counter, and 0.027, 0.04, 0.069 $/kWh for shifting loads peak for the smart digital counter. The results showed that the daily savings in consumed power are 8.27% in spring, 6.86% in summer, 8.81% in autumn, and 14.55% in winter. Also, the daily savings in electricity bills are 12.26% in spring, 16.66% in summer, 12.84% in autumn, and 14.55% in winter. The obtained maximum saving in consumed power is 14.5% and the daily saving in electricity bills is 43% in summer when the loads peak is completely shifted to off-peak period.展开更多
含冰粒的载/蓄冷充填降温是解决深井热害问题的有效方式,但其制冰能耗大、系统运行费用较高。为此,研发了基于太阳能吸附制冷的矿井载/蓄冷充填降温系统(Mine Cold Load/Storage Backfill Cooling System Based on Solar Adsorption Ref...含冰粒的载/蓄冷充填降温是解决深井热害问题的有效方式,但其制冰能耗大、系统运行费用较高。为此,研发了基于太阳能吸附制冷的矿井载/蓄冷充填降温系统(Mine Cold Load/Storage Backfill Cooling System Based on Solar Adsorption Refrigeration),该系统由地面太阳能集热子系统、吸附制冷子系统和地下输冰子系统组成。通过建立子系统的数学模型和地面系统的TRNSYS模型,分别分析甲醇解吸量、吸附制冷量和吸附制冰量在不同太阳能辐射强度、不同季节和不同地区影响下的变化规律,进而得出太阳辐射强度和太阳辐射连续性是造成制冰量差异的主要原因。选取太阳辐射强度和太阳连续性较优的淮南、南宁两区域进行系统制冰能效分析,与传统蒸汽压缩式制冷系统相比,该系统的吸附制冷子系统平均节能效率达到64.71%。研究结果反映出,太阳能吸附制冷与载/蓄冷充填降温相结合的新型矿井降温系统的研发,对于高效解决矿井热害问题有所裨益。展开更多
文摘Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.
文摘Use of district heating and cooling systems has many environmental advantages compared to individual heating and cooling. Recent advances in solar energy technologies for heat and power generation have reduced their cost and promoted their use instead of fossil fuels. Solar-PV energy for electricity generation and solar thermal energy for hot water production are broadly used today. Solar energy resources in the Mediterranean region are abundant while space cooling in buildings is required when solar irradiance is high. The possibility of using solar energy for fuelling water chillers providing cold water in district cooling systems in the Mediterranean basin has been investigated. Existing literature and studies concerning the use of district cooling systems globally as well as the energy sources used in them have been examined. Solar-PV energy combined with compression chillers and solar thermal energy combined with thermally driven chillers can be used for cold water production. Their overall efficiencies, converting solar energy to cold water, vary between 22% and 56% compared with 45% for compression chillers using grid electricity. It is concluded that various solar energy technologies could be used with different types of water chillers for fuelling district cooling networks in the future in the Mediterranean region.
文摘In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of residential buildings and Model B of schools and hospitals were used to estimate the daily cooling load profile in Makkah, Saudi Arabia at latitude of 21.42°N and longitude of 39.83°E. Model A was constructed from common materials, but Model B as Model A with 5 - 8 cm thermal insulation and double layers glass windows. The average data of Makkah weather through 2010, 2011 and 2012 were used to calculate the cooling load profile and performance of air conditioning systems. The maximum cooling load was calculated at 15:00 o’clock for a main floor building to a 40-floor of residential building and to 5 floors of schools. A district cooling plant of 180,000 Refrigeration Ton was suggested to serve the Gabal Al Sharashf area in the central zone of Makkah. A thermal storage system to store the excess cooling capacity was used. Air cooled condensers were used in the analysis of chiller refrigeration cycle. The operating cost was mainly a function of electrical energy consumption. Fixed electricity tariff was 0.04 $/kWh for electromechanical counter, and 0.027, 0.04, 0.069 $/kWh for shifting loads peak for the smart digital counter. The results showed that the daily savings in consumed power are 8.27% in spring, 6.86% in summer, 8.81% in autumn, and 14.55% in winter. Also, the daily savings in electricity bills are 12.26% in spring, 16.66% in summer, 12.84% in autumn, and 14.55% in winter. The obtained maximum saving in consumed power is 14.5% and the daily saving in electricity bills is 43% in summer when the loads peak is completely shifted to off-peak period.
文摘含冰粒的载/蓄冷充填降温是解决深井热害问题的有效方式,但其制冰能耗大、系统运行费用较高。为此,研发了基于太阳能吸附制冷的矿井载/蓄冷充填降温系统(Mine Cold Load/Storage Backfill Cooling System Based on Solar Adsorption Refrigeration),该系统由地面太阳能集热子系统、吸附制冷子系统和地下输冰子系统组成。通过建立子系统的数学模型和地面系统的TRNSYS模型,分别分析甲醇解吸量、吸附制冷量和吸附制冰量在不同太阳能辐射强度、不同季节和不同地区影响下的变化规律,进而得出太阳辐射强度和太阳辐射连续性是造成制冰量差异的主要原因。选取太阳辐射强度和太阳连续性较优的淮南、南宁两区域进行系统制冰能效分析,与传统蒸汽压缩式制冷系统相比,该系统的吸附制冷子系统平均节能效率达到64.71%。研究结果反映出,太阳能吸附制冷与载/蓄冷充填降温相结合的新型矿井降温系统的研发,对于高效解决矿井热害问题有所裨益。