Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice i...Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.展开更多
Use of district heating and cooling systems has many environmental advantages compared to individual heating and cooling. Recent advances in solar energy technologies for heat and power generation have reduced their c...Use of district heating and cooling systems has many environmental advantages compared to individual heating and cooling. Recent advances in solar energy technologies for heat and power generation have reduced their cost and promoted their use instead of fossil fuels. Solar-PV energy for electricity generation and solar thermal energy for hot water production are broadly used today. Solar energy resources in the Mediterranean region are abundant while space cooling in buildings is required when solar irradiance is high. The possibility of using solar energy for fuelling water chillers providing cold water in district cooling systems in the Mediterranean basin has been investigated. Existing literature and studies concerning the use of district cooling systems globally as well as the energy sources used in them have been examined. Solar-PV energy combined with compression chillers and solar thermal energy combined with thermally driven chillers can be used for cold water production. Their overall efficiencies, converting solar energy to cold water, vary between 22% and 56% compared with 45% for compression chillers using grid electricity. It is concluded that various solar energy technologies could be used with different types of water chillers for fuelling district cooling networks in the future in the Mediterranean region.展开更多
In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of r...In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of residential buildings and Model B of schools and hospitals were used to estimate the daily cooling load profile in Makkah, Saudi Arabia at latitude of 21.42°N and longitude of 39.83°E. Model A was constructed from common materials, but Model B as Model A with 5 - 8 cm thermal insulation and double layers glass windows. The average data of Makkah weather through 2010, 2011 and 2012 were used to calculate the cooling load profile and performance of air conditioning systems. The maximum cooling load was calculated at 15:00 o’clock for a main floor building to a 40-floor of residential building and to 5 floors of schools. A district cooling plant of 180,000 Refrigeration Ton was suggested to serve the Gabal Al Sharashf area in the central zone of Makkah. A thermal storage system to store the excess cooling capacity was used. Air cooled condensers were used in the analysis of chiller refrigeration cycle. The operating cost was mainly a function of electrical energy consumption. Fixed electricity tariff was 0.04 $/kWh for electromechanical counter, and 0.027, 0.04, 0.069 $/kWh for shifting loads peak for the smart digital counter. The results showed that the daily savings in consumed power are 8.27% in spring, 6.86% in summer, 8.81% in autumn, and 14.55% in winter. Also, the daily savings in electricity bills are 12.26% in spring, 16.66% in summer, 12.84% in autumn, and 14.55% in winter. The obtained maximum saving in consumed power is 14.5% and the daily saving in electricity bills is 43% in summer when the loads peak is completely shifted to off-peak period.展开更多
The optical properties of coatings pigmented with different black colorants were systematically investigated and their surface temperatures and cooling energy savings were estimated. The black coatings pigmented with ...The optical properties of coatings pigmented with different black colorants were systematically investigated and their surface temperatures and cooling energy savings were estimated. The black coatings pigmented with chromite iron nickel black and manganese ferrite black spinel colorants are not cool enough to be energy efficient cool black coatings. The cool black coatings pigmented with NIR-transmitting perylene black and dioxazine purple colorants possess a green shade and a violet shade, respectively. The estimated surface temperature reduction values and annual cooling energy savings in Beijing range from 3.0°C and 1.21 kWhm-2yr-1 for the black coating pigmented with chromite iron nickel colorant to 13.8°C and 5.52 kWhm-2yr-1 for the black coating pigmented with dioxazine purple colorant, respectively.展开更多
In hot climates,the large amount of cooling load in electric vehicle(EV)results in a lot of battery energy consumption,leading the decrease of driving range.With the widespread application of windows in EV,the electro...In hot climates,the large amount of cooling load in electric vehicle(EV)results in a lot of battery energy consumption,leading the decrease of driving range.With the widespread application of windows in EV,the electrochromic glass(EC)shows great prospect in lowering the cooling load.However,researches on the application of EC in EV lack the consideration of both passive cooling measures and passenger comfort,which limits the further application of EC.In this paper,we proposed an idea combining the novel techniques of both electrochromism and radiative cooling.Computational fluid dynamics(CFD)is modeled to simulate the application of electrochromic and radiative cooling coupled smart windows in hot parking conditions,exploring the improvement effect of the window on the thermal environment,comfort and energy saving of the EV.The results indicate that,under the intense sunlight with an outdoor temperature of 33℃,activating the air conditioning to maintain an average interior temperature of 26℃,the coupled windows reduced the cooling capacity of the air conditioning by 762 W compared to regular windows,which can further increase the range of EV.Meanwhile,compared to simple electrochromic fully colored glass,the integration of radiative cooling technology can lower the window surface temperature by up to 10.7℃.Moreover,compared to regular windows,the coupled windows lowered the standard effective temperature(SET*)for passengers by approximately 7℃,significantly improving comfort.These research findings are expected to provide guidance for optimizing window design and enhancing the performance of EV.展开更多
Building fresh air supply needs to meet certain regulations and fit people’s ever-growing indoor air quality de-mand.However,fresh air handling requires huge energy consumption that goes against the goal of net-zero ...Building fresh air supply needs to meet certain regulations and fit people’s ever-growing indoor air quality de-mand.However,fresh air handling requires huge energy consumption that goes against the goal of net-zero energy buildings.Thus,in this work,an adaptive fresh air pre-handling system is designed to reduce the cool-ing and heating loads of HVAC system.The sky-facing surface of the system uses electrochromic mechanism to manipulate the optical properties and thus make full use of solar energy(solar heating)and deep space cold source(radiative cooling)by switching between heating and cooling modes.In the cooling mode,the sky-facing surface shows a transmittance of down to zero,while the reflectance is high at 0.89 on average.In the heating mode,the electrochromic glass is highly transparent,allowing the sunlight to reach the solar heat absorber.To obtain the energy-saving potential under different climates,six cities were selected from various climate regions in China.Results show that the adaptive fresh air pre-handling system can be effective in up to 55.4%time of a year.The maximum energy-saving ratios for medium office,warehouse,and single-family house can reach up to 11.52%,26.62%,and 18.29%,respectively.In addition,the system shows multi-climate adaptability and broad application scenarios,making it a potential solution to building energy saving.展开更多
This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studie...This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studied for continental climatic conditions. The district network study bases on 21 buildings located near to the Gulf of Finland. Industrial reversible heat pump technology is selected to cover heating and cooling loads for the new buildings. Combination of existing district heating and heat pump technology is considered for existing buildings. The results show possibilities, threats and need for further research of the sea water based heat pump district network implementation.展开更多
Radiative cooling has proven to be a useful tool to address the problems of lack of comfort and excessive energy consumption in situations of high temperatures,overheating and heat waves.Likewise,incorporating courtya...Radiative cooling has proven to be a useful tool to address the problems of lack of comfort and excessive energy consumption in situations of high temperatures,overheating and heat waves.Likewise,incorporating courtyards in warm climate zones has been found to be highly beneficial in addressing similar challenges.Hence,there is interest in analyzing the combined effects of both:radiative cooling and courtyards.This paper presents an analysis of the impact of the application of radiative cooling on a courtyard using a comprehensive simulation approach that includes a CFD model for the thermodynamic airflow in the adjacent roofs and inside the courtyard,equations for the transient heat conduction through roofs,walls and courtyard slabs,and a hybrid raytracing-radiosity model for the evaluation of the solar radiation reaching the building surfaces and its reflections,both of specular and diffuse origin,and for the calculation of the thermal radiation exchange,especially with the sky.The results show that in the hot season,the courtyard with radiative cooling always provides lower temperatures than the initial courtyard does,with a temperature range of 18.33℃to 33.78℃,compared to a range of 19.32℃to 38.00℃in the initial courtyard,and producing a greater difference with outdoor temperatures that can reach 12℃versus 8℃for the reference case.In addition,it was found that the courtyard with radiative cooling is able to significantly reduce the observed nighttime overheating by providing lower temperatures than the outdoor temperatures in the 50%of the nights studied.It was also found that the thermal loads to achieve indoor thermal comfort in the spaces adjacent to the courtyard were reduced by 63.46%to 69.85%.展开更多
In semiconductor and electronics factories, large multi-chiller systems are needed to satisfy strict cooling load requirements. In order to save energy, it is worthwhile to design the chilled water system operation. I...In semiconductor and electronics factories, large multi-chiller systems are needed to satisfy strict cooling load requirements. In order to save energy, it is worthwhile to design the chilled water system operation. In this paper, an optimal flexible operation scheme is developed based on a two-dimensional time-series model to forecast the cooling load of multi-chiller systems with chiller units of different cooling capacities running in parallel. The optimal integrity scheme can be obtained using the Mixed Integer Nonlinear Programming method, which minimizes the energy consumption of the system within a future time period. In order to better adapt the change of cooling load, the operation strategy of regulating the chilled water flowrates is employed. The chilled water flowrates are set as a design variable. When the chillers are running, their chilled water flowrates can vary within limits, whereas the flowrates are zero when the chillers are unloaded. This forecasting method provides integral optimization within a future time period and offers the operating reference for operators. The power and advantages of the proposed method are presented using an industrial case to help readers delve into this matter.展开更多
To achieve required indoor air quality,fresh air supply in buildings should meet relevant standards and regulations.However,the handling of fresh air introduced a cooling load that takes up a large portion of building...To achieve required indoor air quality,fresh air supply in buildings should meet relevant standards and regulations.However,the handling of fresh air introduced a cooling load that takes up a large portion of building energy consumption,especially in tropical and subtropical areas.A proper way should be employed to reduce the cooling load of fresh air.Radiative sky cooling,which is the process that an object cools itself by emitting thermal radiation to outer space without any energy input,is a cost-effective and eco-friendly technology.In this work,a fresh air pre-cooling system using radiative sky cooling is proposed to reduce fresh air cooling load.The system,consisting of filters,a radiative air-cooling system,an air handling unit(AHU),fans,etc.,is installed on the rooftop of the modeled building.Six cities in low-latitude areas are selected and investigated.Results show that with the radiative air-cooling system installed,annual cooling energy consumption of the modeled building can be reduced by around 10%in most cities.For arid areas,e.g.,Abu Dhabi,the system has even better performance with 19.34%annual cooling energy saving.展开更多
文摘Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.
文摘Use of district heating and cooling systems has many environmental advantages compared to individual heating and cooling. Recent advances in solar energy technologies for heat and power generation have reduced their cost and promoted their use instead of fossil fuels. Solar-PV energy for electricity generation and solar thermal energy for hot water production are broadly used today. Solar energy resources in the Mediterranean region are abundant while space cooling in buildings is required when solar irradiance is high. The possibility of using solar energy for fuelling water chillers providing cold water in district cooling systems in the Mediterranean basin has been investigated. Existing literature and studies concerning the use of district cooling systems globally as well as the energy sources used in them have been examined. Solar-PV energy combined with compression chillers and solar thermal energy combined with thermally driven chillers can be used for cold water production. Their overall efficiencies, converting solar energy to cold water, vary between 22% and 56% compared with 45% for compression chillers using grid electricity. It is concluded that various solar energy technologies could be used with different types of water chillers for fuelling district cooling networks in the future in the Mediterranean region.
文摘In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of residential buildings and Model B of schools and hospitals were used to estimate the daily cooling load profile in Makkah, Saudi Arabia at latitude of 21.42°N and longitude of 39.83°E. Model A was constructed from common materials, but Model B as Model A with 5 - 8 cm thermal insulation and double layers glass windows. The average data of Makkah weather through 2010, 2011 and 2012 were used to calculate the cooling load profile and performance of air conditioning systems. The maximum cooling load was calculated at 15:00 o’clock for a main floor building to a 40-floor of residential building and to 5 floors of schools. A district cooling plant of 180,000 Refrigeration Ton was suggested to serve the Gabal Al Sharashf area in the central zone of Makkah. A thermal storage system to store the excess cooling capacity was used. Air cooled condensers were used in the analysis of chiller refrigeration cycle. The operating cost was mainly a function of electrical energy consumption. Fixed electricity tariff was 0.04 $/kWh for electromechanical counter, and 0.027, 0.04, 0.069 $/kWh for shifting loads peak for the smart digital counter. The results showed that the daily savings in consumed power are 8.27% in spring, 6.86% in summer, 8.81% in autumn, and 14.55% in winter. Also, the daily savings in electricity bills are 12.26% in spring, 16.66% in summer, 12.84% in autumn, and 14.55% in winter. The obtained maximum saving in consumed power is 14.5% and the daily saving in electricity bills is 43% in summer when the loads peak is completely shifted to off-peak period.
文摘The optical properties of coatings pigmented with different black colorants were systematically investigated and their surface temperatures and cooling energy savings were estimated. The black coatings pigmented with chromite iron nickel black and manganese ferrite black spinel colorants are not cool enough to be energy efficient cool black coatings. The cool black coatings pigmented with NIR-transmitting perylene black and dioxazine purple colorants possess a green shade and a violet shade, respectively. The estimated surface temperature reduction values and annual cooling energy savings in Beijing range from 3.0°C and 1.21 kWhm-2yr-1 for the black coating pigmented with chromite iron nickel colorant to 13.8°C and 5.52 kWhm-2yr-1 for the black coating pigmented with dioxazine purple colorant, respectively.
基金supported by the National Natural Science Foundation of China(No.52130803,No.52394220)the New Cornerstone Science Foundation through the XPLORER PRIZE,Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows(BX202218)the China Postdoctoral Science Foundation(2023M732479)and Tsinghua University-Mercedes Benz Institute for Sustainable Mobility。
文摘In hot climates,the large amount of cooling load in electric vehicle(EV)results in a lot of battery energy consumption,leading the decrease of driving range.With the widespread application of windows in EV,the electrochromic glass(EC)shows great prospect in lowering the cooling load.However,researches on the application of EC in EV lack the consideration of both passive cooling measures and passenger comfort,which limits the further application of EC.In this paper,we proposed an idea combining the novel techniques of both electrochromism and radiative cooling.Computational fluid dynamics(CFD)is modeled to simulate the application of electrochromic and radiative cooling coupled smart windows in hot parking conditions,exploring the improvement effect of the window on the thermal environment,comfort and energy saving of the EV.The results indicate that,under the intense sunlight with an outdoor temperature of 33℃,activating the air conditioning to maintain an average interior temperature of 26℃,the coupled windows reduced the cooling capacity of the air conditioning by 762 W compared to regular windows,which can further increase the range of EV.Meanwhile,compared to simple electrochromic fully colored glass,the integration of radiative cooling technology can lower the window surface temperature by up to 10.7℃.Moreover,compared to regular windows,the coupled windows lowered the standard effective temperature(SET*)for passengers by approximately 7℃,significantly improving comfort.These research findings are expected to provide guidance for optimizing window design and enhancing the performance of EV.
基金the support from National Natural Sci-ence Foundation of China(52276178)Natural Science Foundation of Jiangsu Province,China(BK20200373).
文摘Building fresh air supply needs to meet certain regulations and fit people’s ever-growing indoor air quality de-mand.However,fresh air handling requires huge energy consumption that goes against the goal of net-zero energy buildings.Thus,in this work,an adaptive fresh air pre-handling system is designed to reduce the cool-ing and heating loads of HVAC system.The sky-facing surface of the system uses electrochromic mechanism to manipulate the optical properties and thus make full use of solar energy(solar heating)and deep space cold source(radiative cooling)by switching between heating and cooling modes.In the cooling mode,the sky-facing surface shows a transmittance of down to zero,while the reflectance is high at 0.89 on average.In the heating mode,the electrochromic glass is highly transparent,allowing the sunlight to reach the solar heat absorber.To obtain the energy-saving potential under different climates,six cities were selected from various climate regions in China.Results show that the adaptive fresh air pre-handling system can be effective in up to 55.4%time of a year.The maximum energy-saving ratios for medium office,warehouse,and single-family house can reach up to 11.52%,26.62%,and 18.29%,respectively.In addition,the system shows multi-climate adaptability and broad application scenarios,making it a potential solution to building energy saving.
文摘This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studied for continental climatic conditions. The district network study bases on 21 buildings located near to the Gulf of Finland. Industrial reversible heat pump technology is selected to cover heating and cooling loads for the new buildings. Combination of existing district heating and heat pump technology is considered for existing buildings. The results show possibilities, threats and need for further research of the sea water based heat pump district network implementation.
基金funded by the Ministry of Economy and Competitiveness of the Spanish Government and the European Regional Development Fund through the research and development project“Parametric Optimization of Double Skin Facades in the Mediterranean Climate to Improve Energy Efficiency Under Climate Change Scenarios”(ref BIA2017-86383-R).
文摘Radiative cooling has proven to be a useful tool to address the problems of lack of comfort and excessive energy consumption in situations of high temperatures,overheating and heat waves.Likewise,incorporating courtyards in warm climate zones has been found to be highly beneficial in addressing similar challenges.Hence,there is interest in analyzing the combined effects of both:radiative cooling and courtyards.This paper presents an analysis of the impact of the application of radiative cooling on a courtyard using a comprehensive simulation approach that includes a CFD model for the thermodynamic airflow in the adjacent roofs and inside the courtyard,equations for the transient heat conduction through roofs,walls and courtyard slabs,and a hybrid raytracing-radiosity model for the evaluation of the solar radiation reaching the building surfaces and its reflections,both of specular and diffuse origin,and for the calculation of the thermal radiation exchange,especially with the sky.The results show that in the hot season,the courtyard with radiative cooling always provides lower temperatures than the initial courtyard does,with a temperature range of 18.33℃to 33.78℃,compared to a range of 19.32℃to 38.00℃in the initial courtyard,and producing a greater difference with outdoor temperatures that can reach 12℃versus 8℃for the reference case.In addition,it was found that the courtyard with radiative cooling is able to significantly reduce the observed nighttime overheating by providing lower temperatures than the outdoor temperatures in the 50%of the nights studied.It was also found that the thermal loads to achieve indoor thermal comfort in the spaces adjacent to the courtyard were reduced by 63.46%to 69.85%.
文摘In semiconductor and electronics factories, large multi-chiller systems are needed to satisfy strict cooling load requirements. In order to save energy, it is worthwhile to design the chilled water system operation. In this paper, an optimal flexible operation scheme is developed based on a two-dimensional time-series model to forecast the cooling load of multi-chiller systems with chiller units of different cooling capacities running in parallel. The optimal integrity scheme can be obtained using the Mixed Integer Nonlinear Programming method, which minimizes the energy consumption of the system within a future time period. In order to better adapt the change of cooling load, the operation strategy of regulating the chilled water flowrates is employed. The chilled water flowrates are set as a design variable. When the chillers are running, their chilled water flowrates can vary within limits, whereas the flowrates are zero when the chillers are unloaded. This forecasting method provides integral optimization within a future time period and offers the operating reference for operators. The power and advantages of the proposed method are presented using an industrial case to help readers delve into this matter.
基金support from the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20200373).
文摘To achieve required indoor air quality,fresh air supply in buildings should meet relevant standards and regulations.However,the handling of fresh air introduced a cooling load that takes up a large portion of building energy consumption,especially in tropical and subtropical areas.A proper way should be employed to reduce the cooling load of fresh air.Radiative sky cooling,which is the process that an object cools itself by emitting thermal radiation to outer space without any energy input,is a cost-effective and eco-friendly technology.In this work,a fresh air pre-cooling system using radiative sky cooling is proposed to reduce fresh air cooling load.The system,consisting of filters,a radiative air-cooling system,an air handling unit(AHU),fans,etc.,is installed on the rooftop of the modeled building.Six cities in low-latitude areas are selected and investigated.Results show that with the radiative air-cooling system installed,annual cooling energy consumption of the modeled building can be reduced by around 10%in most cities.For arid areas,e.g.,Abu Dhabi,the system has even better performance with 19.34%annual cooling energy saving.