期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Precision motion control for electro-hydraulic axis systems under unknown time-variant parameters and disturbances
1
作者 Xiaowei YANG Yaowen GE +1 位作者 Wenxiang DENG Jianyong YAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期463-471,共9页
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ... This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well. 展开更多
关键词 Adaptive control Asymptotic convergence Electro-hydraulic axis system Precision motion control Unknown time-variant parameters and disturbances
原文传递
Disturbed state concept as unified constitutive modeling approach 被引量:3
2
作者 Chandrakant S.Desai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第3期277-293,共17页
A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeforma... A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license 展开更多
关键词 Disturbed state concept (DSC)Constitutive model parameters Soils Interfaces Validations
下载PDF
Diagnostic Analysis of Wave Action Density During Heavy Rainfall Caused by Landfalling Typhoon
3
作者 周冠博 焦亚音 许映龙 《Journal of Tropical Meteorology》 SCIE 2022年第3期364-376,共13页
Based on prior investigation,this work defined a new thermodynamic shear advection parameter,which combines the vertical component of convective vorticity vector,horizontal divergence,and vertical gradient of generali... Based on prior investigation,this work defined a new thermodynamic shear advection parameter,which combines the vertical component of convective vorticity vector,horizontal divergence,and vertical gradient of generalized potential temperature.The interaction between waves and fundamental states was computed for the heavyrainfall event generated by landfalling typhoon“Morakot”.The analysis data was produced by ADAS[ARPS(Advanced Regional Prediction System)Data Analysis System]combined with the NCEP/NCAR final analysis data(1°×1°,26 vertical pressure levels and 6-hour interval)with the routine observations of surface and sounding.Because it may describe the typical vertical structure of dynamical and thermodynamic fields,the result indicates that the parameter is intimately related to precipitation systems.The parameter’s positive high-value area closely matches the reported 6-hour accumulated surface rainfall.And the statistical analysis reveals a certain correspondence between the thermodynamic shear advection parameter and the observed 6-hour accumulated surface rainfall in the summer of 2009.This implies that the parameter can predict and indicate the rainfall area,as well as the initiation and evolution of precipitation systems. 展开更多
关键词 disturbance thermodynamic shear advection parameter wave action density generalized potential temperature wave-flow interaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部