Objective Protein disulfide isomerase A2(PDIA2),a member of the protein disulfide isomerase family,plays a key role in the folding of nascent proteins in the endoplasmic reticulum by forming disulfide bonds,together w...Objective Protein disulfide isomerase A2(PDIA2),a member of the protein disulfide isomerase family,plays a key role in the folding of nascent proteins in the endoplasmic reticulum by forming disulfide bonds,together with enzymes such as thiol isomerase,oxidase,and reductase.This study investigated the clinical significance and potential functions of PDIA2 in glioma.Methods The expression of PDIA2 in gliomas was explored using The Cancer Genome Atlas and Gene Expression Omnibus databases.We analyzed the clinical characteristics of glioma patients and the prognostic and diagnostic value of PDIA2 expression.Kaplan-Meier and Cox regression analyses were used to examine the effect of PDIA2 expression on overall survival,progression-free interval,and disease-specific survival.Furthermore,we performed Gene Set Enrichment Analysis and immune infiltration analysis to investigate the functions of PDIA2.PDIA2 mRNA and protein expression was evaluated in cell lines and glioma tissues.Results PDIA2 was expressed at low levels in glioma patients.Kaplan-Meier survival analysis showed that glioma patients with low PDIA2 levels had a worse prognosis than those with high PDIA2 levels.Receiver operating characteristic curve analysis indicated the diagnostic and prognostic ability of PDIA2(area under the curve=0.918).Pathways associated with PD1,PI3K/AKT,cancer immunotherapy via PD1 blockade,Fceri-mediated NF-kB activation,FOXM1,and DNA repair were enriched in glioma patients with low levels of PDIA2.PDIA2 expression levels were negatively correlated with immune cell infiltrate levels.Conclusion PDIA2 levels are significantly downregulated in glioma.PDIA2 expression may be a potential biomarker for the diagnosis and prognosis of glioma patients.展开更多
Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin ...Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin organic polymer with p-πconjugated structure(TPP)was rationally designed and prepared,and showed a high yield of CO(15.2 mmol g^(-1))and conversion of SAS coupled products(100%),far exceeding the organic polymer with P=O structure.The enhanced photoredox activity of TPP is ascribed to the orbital interaction between the p-orbital on phosphorus and theπ-orbitals of aromatic,which can accelerate the photoinduced charge carrier separation and improve the CO_(2)adsorption capacity.TPP can also be used for the dehydrocoupling of various benzyl mercaptans to the corresponding SAS bond products.This work provides a new concept for the efficient synthesis of disulfide bonds combined with CO_(2)reduction in a photoreaction system.展开更多
In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfi...In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, 02 concentration, gas hourly space velocity (GHSV) and relative humidity (RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% A1203 calcined at 300 ℃ had supe- rior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2 was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2 decrease. A small amount of 02 introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.展开更多
Surface chemistry modification represents a promising strategy to tailor the adsorption and activation of reaction intermediates for enhancing activity.Herein,we designed a surface oxygen-injection strategy to tune th...Surface chemistry modification represents a promising strategy to tailor the adsorption and activation of reaction intermediates for enhancing activity.Herein,we designed a surface oxygen-injection strategy to tune the electronic structure of SnS_(2) nanosheets,which showed effectively enhanced electrocatalytic activity and selectivity of CO_(2) reduction to formate and syngas(CO and H_(2)).The oxygen-injection SnS_(2) nanosheets exhibit a remarkable Faradaic efficiency of 91.6%for carbonaceous products with a current density of 24.1 mA cm^(−2) at−0.9 V vs RHE,including 83.2%for formate production and 16.5%for syngas with the CO/H_(2) ratio of 1:1.By operando X-ray absorption spectroscopy,we unravel the in situ surface oxygen doping into the matrix during reaction,thereby optimizing the Sn local electronic states.Operando synchrotron radiation infrared spectroscopy along with theoretical calculations further reveals that the surface oxygen doping facilitated the CO_(2) activation and enhanced the affinity for HCOO*species.This result demonstrates the potential strategy of surface oxygen injection for the rational design of advanced catalysts for CO_(2) electroreduction.展开更多
The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy stor...The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.展开更多
PVC disulfide (2SPVC) was synthesized by solution crosslink and its molecular structure was confirmed by infrared spectrum. 2SPVC's specific area is 36.1 m^2·g^-1 tested by stand BET method, and granularity ex...PVC disulfide (2SPVC) was synthesized by solution crosslink and its molecular structure was confirmed by infrared spectrum. 2SPVC's specific area is 36.1 m^2·g^-1 tested by stand BET method, and granularity experiment gives out the particle size of d0.5 = 11.3 μm. With SEM (Scanning Electron Microscope) experiment the surface morphology and particle shape of 2SPVC were observed. Cyclic voltammetry (scan rate: 0.5 mV · s^-1) shows that 2SPVC experience an obvious S-S redox reaction in charge-discharge process. When 2SPVC was used as cathode material for secondary lithium battery in a 1 mol·L^-1 solution of lithium bis(trifluoromethylsulfonyl) imide (Li(CF3SO2)2N) in a 5:45:50 volume ratio mixture of o-xylene (oxy), diglyme (DG) and dimethoxymethane (DME) at 30℃, the first discharge capacity of 2SPVC is about 400.3 mAh·g^-1 which is very close to its theoretical value (410.5 mAh ·g^-1) at a constant discharge current of 15 mA·g^-1. It can retain at about 346.1 mAh ·g^-1 of discharge capacity after 30 charge-discharge cycles. So 2SPVC is a very promising cathode candidate for rechargeable lithium batteries.展开更多
A recent application of a simple,all-dry,abrasive transfer of 2D materials on paper demonstrates the potential of two-dimensional tungsten disulfide(WS_(2))as the sensitive material of a flexible photoconductive detec...A recent application of a simple,all-dry,abrasive transfer of 2D materials on paper demonstrates the potential of two-dimensional tungsten disulfide(WS_(2))as the sensitive material of a flexible photoconductive detector.The devices show really good responsivity over a bandwidth spanning from near infrared to ultraviolet and could open new avenues towards disposable optoelectronics systems.展开更多
基金the Natural Science Foundation of Southwest Medical University(No.2016XNYD217,No.2018-ZRQN-032 and No.2016LZXNYD-G03)the National Natural Science Foundation of China(No.82072780)Sichuan Science and Technology Program(No.2022YFS0630).
文摘Objective Protein disulfide isomerase A2(PDIA2),a member of the protein disulfide isomerase family,plays a key role in the folding of nascent proteins in the endoplasmic reticulum by forming disulfide bonds,together with enzymes such as thiol isomerase,oxidase,and reductase.This study investigated the clinical significance and potential functions of PDIA2 in glioma.Methods The expression of PDIA2 in gliomas was explored using The Cancer Genome Atlas and Gene Expression Omnibus databases.We analyzed the clinical characteristics of glioma patients and the prognostic and diagnostic value of PDIA2 expression.Kaplan-Meier and Cox regression analyses were used to examine the effect of PDIA2 expression on overall survival,progression-free interval,and disease-specific survival.Furthermore,we performed Gene Set Enrichment Analysis and immune infiltration analysis to investigate the functions of PDIA2.PDIA2 mRNA and protein expression was evaluated in cell lines and glioma tissues.Results PDIA2 was expressed at low levels in glioma patients.Kaplan-Meier survival analysis showed that glioma patients with low PDIA2 levels had a worse prognosis than those with high PDIA2 levels.Receiver operating characteristic curve analysis indicated the diagnostic and prognostic ability of PDIA2(area under the curve=0.918).Pathways associated with PD1,PI3K/AKT,cancer immunotherapy via PD1 blockade,Fceri-mediated NF-kB activation,FOXM1,and DNA repair were enriched in glioma patients with low levels of PDIA2.PDIA2 expression levels were negatively correlated with immune cell infiltrate levels.Conclusion PDIA2 levels are significantly downregulated in glioma.PDIA2 expression may be a potential biomarker for the diagnosis and prognosis of glioma patients.
基金the financial support of the research fund of the Science and Technology Innovation Program of Hunan Province(2020RC2076)the General Project of Education Department of Hunan Province(21C008)+2 种基金the Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University(2022C02)the Youth Science and Technology Talent Project of Hunan Province(2022RC1197)the Hunan Provincial Natural Science Foundation of China(2021JJ40529)。
文摘Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin organic polymer with p-πconjugated structure(TPP)was rationally designed and prepared,and showed a high yield of CO(15.2 mmol g^(-1))and conversion of SAS coupled products(100%),far exceeding the organic polymer with P=O structure.The enhanced photoredox activity of TPP is ascribed to the orbital interaction between the p-orbital on phosphorus and theπ-orbitals of aromatic,which can accelerate the photoinduced charge carrier separation and improve the CO_(2)adsorption capacity.TPP can also be used for the dehydrocoupling of various benzyl mercaptans to the corresponding SAS bond products.This work provides a new concept for the efficient synthesis of disulfide bonds combined with CO_(2)reduction in a photoreaction system.
基金supported by the Ministry of Environmental Protection,Public Welfare Project(Contract No 201109034)the National Natural Science Foundation(U1137603)
文摘In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, 02 concentration, gas hourly space velocity (GHSV) and relative humidity (RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% A1203 calcined at 300 ℃ had supe- rior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2 was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2 decrease. A small amount of 02 introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.
基金This work was supported by National Natural Science Foundation of China(Grants No.12025505)China Ministry of Science and Technology(2017YFA0208300)+2 种基金Youth Innovation Promotion Association CAS(CX2310007007 and CX2310000091)Open Fund Project of State Key Laboratory of Environmentally Friendly Energy Materials(20kfhg08)We would thank NSRL and SSRF for the synchrotron beam time.The calculations were performed on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.
文摘Surface chemistry modification represents a promising strategy to tailor the adsorption and activation of reaction intermediates for enhancing activity.Herein,we designed a surface oxygen-injection strategy to tune the electronic structure of SnS_(2) nanosheets,which showed effectively enhanced electrocatalytic activity and selectivity of CO_(2) reduction to formate and syngas(CO and H_(2)).The oxygen-injection SnS_(2) nanosheets exhibit a remarkable Faradaic efficiency of 91.6%for carbonaceous products with a current density of 24.1 mA cm^(−2) at−0.9 V vs RHE,including 83.2%for formate production and 16.5%for syngas with the CO/H_(2) ratio of 1:1.By operando X-ray absorption spectroscopy,we unravel the in situ surface oxygen doping into the matrix during reaction,thereby optimizing the Sn local electronic states.Operando synchrotron radiation infrared spectroscopy along with theoretical calculations further reveals that the surface oxygen doping facilitated the CO_(2) activation and enhanced the affinity for HCOO*species.This result demonstrates the potential strategy of surface oxygen injection for the rational design of advanced catalysts for CO_(2) electroreduction.
基金the Outstanding Youth Project of Guangdong Provincial Natural Science Foundation,China(Grant No.2022B1515020020)the National Natural Science Foundation of China(Grant No.2225071013)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120079)the Funding by Science and Technology Projects in Guangzhou,China(No.202206050003)the Guangdong Engineering Technology Research Center for Hydrogen Energy and Fuel Cells,China.
文摘The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.
文摘PVC disulfide (2SPVC) was synthesized by solution crosslink and its molecular structure was confirmed by infrared spectrum. 2SPVC's specific area is 36.1 m^2·g^-1 tested by stand BET method, and granularity experiment gives out the particle size of d0.5 = 11.3 μm. With SEM (Scanning Electron Microscope) experiment the surface morphology and particle shape of 2SPVC were observed. Cyclic voltammetry (scan rate: 0.5 mV · s^-1) shows that 2SPVC experience an obvious S-S redox reaction in charge-discharge process. When 2SPVC was used as cathode material for secondary lithium battery in a 1 mol·L^-1 solution of lithium bis(trifluoromethylsulfonyl) imide (Li(CF3SO2)2N) in a 5:45:50 volume ratio mixture of o-xylene (oxy), diglyme (DG) and dimethoxymethane (DME) at 30℃, the first discharge capacity of 2SPVC is about 400.3 mAh·g^-1 which is very close to its theoretical value (410.5 mAh ·g^-1) at a constant discharge current of 15 mA·g^-1. It can retain at about 346.1 mAh ·g^-1 of discharge capacity after 30 charge-discharge cycles. So 2SPVC is a very promising cathode candidate for rechargeable lithium batteries.
基金financial supports from ERC PEP2D (Grant No.770047).
文摘A recent application of a simple,all-dry,abrasive transfer of 2D materials on paper demonstrates the potential of two-dimensional tungsten disulfide(WS_(2))as the sensitive material of a flexible photoconductive detector.The devices show really good responsivity over a bandwidth spanning from near infrared to ultraviolet and could open new avenues towards disposable optoelectronics systems.