The interplay between topology and magnetism is vital for realizing exotic quantum phenomena,significant examples including quantum anomalous Hall effect,axion insulators,and high-order topological states.These states...The interplay between topology and magnetism is vital for realizing exotic quantum phenomena,significant examples including quantum anomalous Hall effect,axion insulators,and high-order topological states.These states host great potential for future applications in high-speed and low-consumption electronic devices.Despite being extensively investigated,practical platforms are still scarce.In this work,with molecular beam epitaxy(MBE),we provide the first experimental report on high-quality Bi(110)/CrTe_(2) magnetic heterostructure.By employing in-situ high-resolution scanning tunneling microscopy,we are able to examine the interaction between magnetism and topology.There is a potential edge state at an energy level above the Fermi level,but no edge states observed near the Fermi level The absence of high-order topological corner states near EF highlights the importance of lattice matching and interface engineering in designing high-order topological states.Our study provides key insights into the interplay between two-dimensional magnetic and topological materials and offers an important dimension for engineering magnetic topological states.展开更多
Transition metal ditellurides(TMTDs)have versatile physical properties,including non-trivial topology,Weyl semimetal states and unique spin texture.Controlled growth of high-quality and large-scale monolayer TMTDs wit...Transition metal ditellurides(TMTDs)have versatile physical properties,including non-trivial topology,Weyl semimetal states and unique spin texture.Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications.Here,we demonstrate the epitaxial growth of 1T'-MoTe_(2) on Au(111)and graphitized silicon carbide(Gr/SiC)by molecular beam epitaxy(MBE).We investigate the morphology of the grown1T'-MoTe_(2) at the atomic level by scanning tunnelling microscopy(STM)and reveal the corresponding microscopic growth mechanism.It is found that the unique ordered Te structures preferentially deposited on Au(111)regulate the growth of monolayer single crystal 1T'-MoTe_(2),while the Mo clusters were preferentially deposited on the Gr/SiC substrate,which impedes the ordered growth of monolayer MoTe_(2).We confirm that the size of single crystal 1T'-MoTe_(2) grown on Au(111)is nearly two orders of magnitude larger than that on Gr/SiC.By scanning tunnelling spectroscopy(STS),we observe that the STS spectrum of the monolayer 1T'-MoTe_(2) nano-island at the edge is different from that at the interior,which exhibits enhanced conductivity.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDCs)have layered structures with excellent tribological properties.Since the energy difference between hexagonal-molybdenum ditelluride(2H-MoTe_(2))and distorted o...Two-dimensional(2D)transition metal dichalcogenides(TMDCs)have layered structures with excellent tribological properties.Since the energy difference between hexagonal-molybdenum ditelluride(2H-MoTe_(2))and distorted octahedral-molybdenum ditelluride(1T′-MoTe_(2))is very small among the transition metal dichalcogenides(TMDCs),MoTe_(2) becomes one of the most promising candidates for phase engineering.In our experiment,we found that the friction force and friction coefficient(COF)of 2H-MoTe_(2) were an order of magnitude smaller than those of 1T′-MoTe_(2) by the atomic force microscope(AFM)experiments.The friction difference between 1T′-MoTe_(2) and 2H-MoTe_(2) was further verified in molecular dynamics(MD)simulations.The density functional theory(DFT)calculations suggest that the friction contrast is related to the difference in sliding energy barrier of the potential energy surface(PES)for a tip sliding across the surface.The PES obtained from the DFT calculation indicates that the maximum energy barrier and the minimum energy path(MEP)energy barrier of 2H-MoTe_(2) are both smaller than those of 1T′-MoTe_(2),which means that less energy needs to be dissipated during the sliding process.The difference in energy barrier of the PES could be ascribed to its larger interlayer spacing and weaker Mo–Te interatomic interactions within the layers of 2H-MoTe_(2) than those of 1T′-MoTe_(2).The obvious friction difference between 1T′-MoTe_(2) and 2H-MoTe_(2) not only provides a new non-destructive means to detect the phase transition by the AFM,but also provides a possibility to tune friction by controlling the phase transition,which has the potential to be applied in extreme environments such as space lubrication.展开更多
文摘The interplay between topology and magnetism is vital for realizing exotic quantum phenomena,significant examples including quantum anomalous Hall effect,axion insulators,and high-order topological states.These states host great potential for future applications in high-speed and low-consumption electronic devices.Despite being extensively investigated,practical platforms are still scarce.In this work,with molecular beam epitaxy(MBE),we provide the first experimental report on high-quality Bi(110)/CrTe_(2) magnetic heterostructure.By employing in-situ high-resolution scanning tunneling microscopy,we are able to examine the interaction between magnetism and topology.There is a potential edge state at an energy level above the Fermi level,but no edge states observed near the Fermi level The absence of high-order topological corner states near EF highlights the importance of lattice matching and interface engineering in designing high-order topological states.Our study provides key insights into the interplay between two-dimensional magnetic and topological materials and offers an important dimension for engineering magnetic topological states.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFA1204302)the National Natural Science Foundation of China (Grant Nos.52022029,52221001,92263107,U23A20570,62090035,U19A2090,and 12174098)+1 种基金the Hunan Provincial Natural Science Foundation of China (Grant Nos.2022JJ30142 and 2019XK2001)in part supported by the State Key Laboratory of Powder Metallurgy,Central South University。
文摘Transition metal ditellurides(TMTDs)have versatile physical properties,including non-trivial topology,Weyl semimetal states and unique spin texture.Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications.Here,we demonstrate the epitaxial growth of 1T'-MoTe_(2) on Au(111)and graphitized silicon carbide(Gr/SiC)by molecular beam epitaxy(MBE).We investigate the morphology of the grown1T'-MoTe_(2) at the atomic level by scanning tunnelling microscopy(STM)and reveal the corresponding microscopic growth mechanism.It is found that the unique ordered Te structures preferentially deposited on Au(111)regulate the growth of monolayer single crystal 1T'-MoTe_(2),while the Mo clusters were preferentially deposited on the Gr/SiC substrate,which impedes the ordered growth of monolayer MoTe_(2).We confirm that the size of single crystal 1T'-MoTe_(2) grown on Au(111)is nearly two orders of magnitude larger than that on Gr/SiC.By scanning tunnelling spectroscopy(STS),we observe that the STS spectrum of the monolayer 1T'-MoTe_(2) nano-island at the edge is different from that at the interior,which exhibits enhanced conductivity.
基金supported by the National Natural Science Foundation of China(Grant No.52175175)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDC04000000).
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDCs)have layered structures with excellent tribological properties.Since the energy difference between hexagonal-molybdenum ditelluride(2H-MoTe_(2))and distorted octahedral-molybdenum ditelluride(1T′-MoTe_(2))is very small among the transition metal dichalcogenides(TMDCs),MoTe_(2) becomes one of the most promising candidates for phase engineering.In our experiment,we found that the friction force and friction coefficient(COF)of 2H-MoTe_(2) were an order of magnitude smaller than those of 1T′-MoTe_(2) by the atomic force microscope(AFM)experiments.The friction difference between 1T′-MoTe_(2) and 2H-MoTe_(2) was further verified in molecular dynamics(MD)simulations.The density functional theory(DFT)calculations suggest that the friction contrast is related to the difference in sliding energy barrier of the potential energy surface(PES)for a tip sliding across the surface.The PES obtained from the DFT calculation indicates that the maximum energy barrier and the minimum energy path(MEP)energy barrier of 2H-MoTe_(2) are both smaller than those of 1T′-MoTe_(2),which means that less energy needs to be dissipated during the sliding process.The difference in energy barrier of the PES could be ascribed to its larger interlayer spacing and weaker Mo–Te interatomic interactions within the layers of 2H-MoTe_(2) than those of 1T′-MoTe_(2).The obvious friction difference between 1T′-MoTe_(2) and 2H-MoTe_(2) not only provides a new non-destructive means to detect the phase transition by the AFM,but also provides a possibility to tune friction by controlling the phase transition,which has the potential to be applied in extreme environments such as space lubrication.