Organic conductor is a kind of organic compound which has special electronic and magnetic properties. The research of the organic compounds has received considerable attention because of their potential applications i...Organic conductor is a kind of organic compound which has special electronic and magnetic properties. The research of the organic compounds has received considerable attention because of their potential applications in many areas. The molecular conductive units are theoretically investigated as well as their energy gap and charge distribution. The relationship of conductivity and micro mechanism is discussed.展开更多
Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical vers...Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.展开更多
CeO2 and Ce0.8M0.2O2-d films (M = Mn, Y, Gd, Sm, Nd and La) with (00l) preferred orientation have been prepared on biaxially textured Ni-W substrates by metal organic decomposition (MOD) method. The factors infl...CeO2 and Ce0.8M0.2O2-d films (M = Mn, Y, Gd, Sm, Nd and La) with (00l) preferred orientation have been prepared on biaxially textured Ni-W substrates by metal organic decomposition (MOD) method. The factors influencing the formation of cracks on the surface of these CeO2 and doped CeO2 films on Ni-W substrates were explored by X-ray diffraction (XRD), scanning electron microscopy (SEM) analysis, atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The results indicate that many factors, such as the change of the ionic radii of doping cations, the transformation of crystal structure and the formation of oxygen vacancies in lattices at high annealing temperature, may be related to the formation of cracks on the surface of these films. However, the crack formation shows no dependence on the crystal lattice mismatch degree of the films with Ni-W substrates. Moreover, the suppression of surface cracks is related to the change of intrinsic elasticity of CeO2 film with doping of cations with a larger radius. SEM and AFM investigations of Ce0.8M0.2O2-d (M = Y, Gd, Sm, Nd and La) films reveal the dense, smooth and crack-free microstructure, and their lattice parameters match well with that of YBCO, illuminating that they are potentially suitable to be as buffer layer, especially as cap layer in multi-layer architecture of buffer layer for coated conductors.展开更多
YBa2Cu3O7-x(YBCO) films were fabricated on an LAO substrate using the trifluoroacetic acid-metal organic deposition(TFA-MOD) method and the effects of the humidity and heat treatment temperatures on the microstructure...YBa2Cu3O7-x(YBCO) films were fabricated on an LAO substrate using the trifluoroacetic acid-metal organic deposition(TFA-MOD) method and the effects of the humidity and heat treatment temperatures on the microstructure,degree of texture and critical properties of the films were evaluated.In order to understand the combined effects of the humidity and the calcining and firing temperatures on critical properties,heat-treatment was performed at various temperatures with the other processing variables fixed.The films were calcined at 400-430 ℃ and fired at 750-800 ℃ in a 0-12.1% humidified Ar-O2 atmosphere.The texture was determined by pole-figure analysis.The amount of the BaF2 phase was effectively reduced and a sharp and strong biaxial texture was formed under a humidified atmosphere,which led to increased critical properties.In addition,the microstructure varied significantly with firing temperature but changed little with calcining temperature.The highest IC of 40 A/cm-width,which corresponds to JC value of 1.8 MA/cm2,was obtained for the films fired at 775 ℃(in 12.1% humidity) after calcining at 400-430 ℃.It is likely that the highest IC value is due to the formation of a more pure YBCO phase,c-axis grains,and a denser microstructure.展开更多
A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Amo...A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Among the various SSEs,the single Li-ion conductor has advantages in terms of enhancing the ion conductivity,eliminating interfacial side reactions,and broadening the electrochemical window.Covalent organic frameworks(COFs)are optimal platforms for achieving single Li-ion conduction behavior because of wellordered one-dimensional channels and precise chemical modification features.Herein,we study in depth three types of Li-carboxylate COFs(denoted LiOOC-COFn,n=1,2,and 3)as single Li-ion conducting SSEs.Benefiting from well-ordered directional ion channels,the single Li-ion conductor LiOOC-COF3 shows an exceptional ion conductivity of 1.36×10^(-5) S cm^(-1) at room temperature and a high transference number of 0.91.Moreover,it shows excellent electrochemical performance with long-term cycling,high-capacity output,and no dendrites in the quasi-solid-state organic battery,with the organic small molecule cyclohexanehexone(C_(6)O_(6))as the cathode and the Li metal as the anode,and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte.展开更多
Linear porphyrin-thiophene copolymers were synthesized by linking 5, 15-positions of porphyrin with tetrathiophene or bithiophene moieties for preparing conducting polymer. 2,8,12,18-tetraethyl-3,7,13,17-tetramethyl-5...Linear porphyrin-thiophene copolymers were synthesized by linking 5, 15-positions of porphyrin with tetrathiophene or bithiophene moieties for preparing conducting polymer. 2,8,12,18-tetraethyl-3,7,13,17-tetramethyl-5, 15-dithienylporphyrin4a (45.1%), 5, 15-di-bithienyl- 2,8,12,18-tetraethyl-3, 7, 13, 17-tetramethylporphyrin4b (61. 2%) and their metal complexes were also reported in high yields (>90%) as the monomers. 5, 15-di-bithienylporphyrin and its metal complexes could be polymerized by oxidation using FeCl3 as oxidant. However, 5,15-dithienylporphyrin and its metal complexes can not be polymerized by same reaction. Their polymers were synthesized by electrochemical oxidation on the gold-plate electrode. The structures of copolymers were identified by elemental analysis and IR spectra. And the conductivity of poly 5,15-di-bithienylporphyrin was measured to reach over 1.0× 10?6S/cm. Key words organic conductor - thienylporphyrin - porphyrin-thiophene copolymer - electropolymerization CLC number O 62 Foundation item: Supported by the National Natural Science Foundation of China (29872033, 20272046)Biography: CHEN Zhang-ping (1946-), male, Professor, research direction: porphyrin chemistry.展开更多
文摘Organic conductor is a kind of organic compound which has special electronic and magnetic properties. The research of the organic compounds has received considerable attention because of their potential applications in many areas. The molecular conductive units are theoretically investigated as well as their energy gap and charge distribution. The relationship of conductivity and micro mechanism is discussed.
基金supported by the Basic Science Research Program (No.RS-2024-00344021) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planningthe financial support from the National Natural Science Foundation of China (52103277)+2 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (23HASTIT015)Natural Science Foundation of Henan Province (242300421073)supported by the Technology Innovation Program (20010960) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea)
文摘Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.
基金Funded by the National Natural Science Foundation of ChinaNational 863 Program of China(Nos.50872115and2009AA03Z203)
文摘CeO2 and Ce0.8M0.2O2-d films (M = Mn, Y, Gd, Sm, Nd and La) with (00l) preferred orientation have been prepared on biaxially textured Ni-W substrates by metal organic decomposition (MOD) method. The factors influencing the formation of cracks on the surface of these CeO2 and doped CeO2 films on Ni-W substrates were explored by X-ray diffraction (XRD), scanning electron microscopy (SEM) analysis, atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The results indicate that many factors, such as the change of the ionic radii of doping cations, the transformation of crystal structure and the formation of oxygen vacancies in lattices at high annealing temperature, may be related to the formation of cracks on the surface of these films. However, the crack formation shows no dependence on the crystal lattice mismatch degree of the films with Ni-W substrates. Moreover, the suppression of surface cracks is related to the change of intrinsic elasticity of CeO2 film with doping of cations with a larger radius. SEM and AFM investigations of Ce0.8M0.2O2-d (M = Y, Gd, Sm, Nd and La) films reveal the dense, smooth and crack-free microstructure, and their lattice parameters match well with that of YBCO, illuminating that they are potentially suitable to be as buffer layer, especially as cap layer in multi-layer architecture of buffer layer for coated conductors.
基金supported by Samsung Research Fund,Sungkyunkwan University,2006
文摘YBa2Cu3O7-x(YBCO) films were fabricated on an LAO substrate using the trifluoroacetic acid-metal organic deposition(TFA-MOD) method and the effects of the humidity and heat treatment temperatures on the microstructure,degree of texture and critical properties of the films were evaluated.In order to understand the combined effects of the humidity and the calcining and firing temperatures on critical properties,heat-treatment was performed at various temperatures with the other processing variables fixed.The films were calcined at 400-430 ℃ and fired at 750-800 ℃ in a 0-12.1% humidified Ar-O2 atmosphere.The texture was determined by pole-figure analysis.The amount of the BaF2 phase was effectively reduced and a sharp and strong biaxial texture was formed under a humidified atmosphere,which led to increased critical properties.In addition,the microstructure varied significantly with firing temperature but changed little with calcining temperature.The highest IC of 40 A/cm-width,which corresponds to JC value of 1.8 MA/cm2,was obtained for the films fired at 775 ℃(in 12.1% humidity) after calcining at 400-430 ℃.It is likely that the highest IC value is due to the formation of a more pure YBCO phase,c-axis grains,and a denser microstructure.
基金National Natural Science Foundation of China,Grant/Award Number:52064049Key National Natural Science Foundation of Yunnan Province,Grant/Award Numbers:2018FA028,2019FY003023+1 种基金International Joint Research Center for Advanced Energy Materials of Yunnan Province,Grant/Award Number:202003AE140001Key Laboratory of Solid State Ions for Green Energy of Yunnan University,Grant/Award Number:2019。
文摘A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Among the various SSEs,the single Li-ion conductor has advantages in terms of enhancing the ion conductivity,eliminating interfacial side reactions,and broadening the electrochemical window.Covalent organic frameworks(COFs)are optimal platforms for achieving single Li-ion conduction behavior because of wellordered one-dimensional channels and precise chemical modification features.Herein,we study in depth three types of Li-carboxylate COFs(denoted LiOOC-COFn,n=1,2,and 3)as single Li-ion conducting SSEs.Benefiting from well-ordered directional ion channels,the single Li-ion conductor LiOOC-COF3 shows an exceptional ion conductivity of 1.36×10^(-5) S cm^(-1) at room temperature and a high transference number of 0.91.Moreover,it shows excellent electrochemical performance with long-term cycling,high-capacity output,and no dendrites in the quasi-solid-state organic battery,with the organic small molecule cyclohexanehexone(C_(6)O_(6))as the cathode and the Li metal as the anode,and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte.
文摘Linear porphyrin-thiophene copolymers were synthesized by linking 5, 15-positions of porphyrin with tetrathiophene or bithiophene moieties for preparing conducting polymer. 2,8,12,18-tetraethyl-3,7,13,17-tetramethyl-5, 15-dithienylporphyrin4a (45.1%), 5, 15-di-bithienyl- 2,8,12,18-tetraethyl-3, 7, 13, 17-tetramethylporphyrin4b (61. 2%) and their metal complexes were also reported in high yields (>90%) as the monomers. 5, 15-di-bithienylporphyrin and its metal complexes could be polymerized by oxidation using FeCl3 as oxidant. However, 5,15-dithienylporphyrin and its metal complexes can not be polymerized by same reaction. Their polymers were synthesized by electrochemical oxidation on the gold-plate electrode. The structures of copolymers were identified by elemental analysis and IR spectra. And the conductivity of poly 5,15-di-bithienylporphyrin was measured to reach over 1.0× 10?6S/cm. Key words organic conductor - thienylporphyrin - porphyrin-thiophene copolymer - electropolymerization CLC number O 62 Foundation item: Supported by the National Natural Science Foundation of China (29872033, 20272046)Biography: CHEN Zhang-ping (1946-), male, Professor, research direction: porphyrin chemistry.