This study analyzed the interdecadal changes in the diurnal variability of summer (June-August) precipitation over eastern China during the period 1966 2005 using hourly station rain gauge data. The results revealed...This study analyzed the interdecadal changes in the diurnal variability of summer (June-August) precipitation over eastern China during the period 1966 2005 using hourly station rain gauge data. The results revealed that rainfall diurnal variations experienced significant interdecadal changes. Over the area to the south of the Yangtze River, as well as the area between the Yangtze and Yellow Rivers, the percentages of morning rainfall (0000 1200 LST) to total rainfall in terms of amount, frequency and intensity, all exhibited increasing interdecadal trends. On the contrary, over North China, decreasing trends were found. As a result, diurnal rainfall peaks also presented pronounced interdecadal variations. Over the area between the Yangtze and Yellow Rivers, there were 16 out of 46 stations with afternoon (1200-0000 LST) frequency peaks in the first 20 years of the 40-year period of study, while only eight remained in the latter 20 years. In North China, seven stations experienced the opposite changes, which accounted for about 21% of the total number of stations. The possible causes for the interdecadal changes in diurnal features were discussed. As the rainfall in the active monsoon period presents morning diurnal peaks, with afternoon peaks in the break period, the decrease (increase) of rainfall in the active monsoon period over North China (the area south of the Yangtze River and the area between the Yangtze and Yellow Rivers) may contribute to interdecadal changes in diurnal rainfall variability.展开更多
The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmos...The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmosphere coupling in which soil moisture is the crucial variable in land surface processes. In this paper, we investigate the sensitivity of the sensible/latent heat fluxes to soil moisture during the growing season based on the enhanced observations at Tongyu in the Jilin province of China, a reference site of international Coordinated Energy and Water Cycle Observations Project (CEOP) in the semi-arid regions, by using a sophisticated land surface model (NCAR_CLM3.0). Comparisons between the observed and simulated sensible/latent heat fluxes indicate that the soil moisture has obvious effects on the sensible/latent heat fluxes in terms of diurnal cycle and seasonal evolution. Better representation of the soil moisture could improve the model performance to a large degree. Therefore, for the purpose of simulating the land-atmosphere interaction and predicting the climate and water resource changes in semi-arid regions, it is necessary to enhance the description of the soil moisture distribution both in the way of observation and its treatment in land surface models.展开更多
In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the ...In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas.展开更多
In this study, records from a 3-yr intensified observational experiment at eight stations along the hillside of Seqilashan over the southeastern Tibetan Plateau were analyzed and combined with records at 28 routine ob...In this study, records from a 3-yr intensified observational experiment at eight stations along the hillside of Seqilashan over the southeastern Tibetan Plateau were analyzed and combined with records at 28 routine observation stations in the Chinese National Meteorological Station Network to investigate the influences of station location on the different diurnal rainfall variations between station records and Tropical Rainfall Measuring Mission (TRMM) data products. The results indicate that the diurnal variation of warm season rainfall is closely related to location of stations. The prevailing nocturnal rainfall peak in observations at routine stations can be largely attributed to the relatively lower location of the stations, which are mostly situated in valleys. The records at Seqilashan stations on hillsides revealed an evident diurnal afternoon peak of warm season rainfall, similar to that indicated by TRMM data. The different diurnal phases between valley and hillside stations are closely related to the orographically induced regional circulations caused by the complex topography over the Tibetan Plateau. The results of this study indicate that the prevailing nocturnal rainfall associated with the relatively lower location of routine observation stations can partially explain the diurnal rainfall variations between observation station records and TRMM data.展开更多
To investigate the impacts of the diurnal cycle on tropical cyclones (TCs),a set of idealized simulations were conducted by specifying different radiation (i.e.,nighttime-only,daytime-only,full diurnal cycle).It w...To investigate the impacts of the diurnal cycle on tropical cyclones (TCs),a set of idealized simulations were conducted by specifying different radiation (i.e.,nighttime-only,daytime-only,full diurnal cycle).It was found that,for an initially weak storm,it developed faster during nighttime than daytime.The impacts of radiation were not only on TC intensification,but also on TC structure and size.The nighttime storm tended to have a larger size than its daytime counterparts.During nighttime,the radiative cooling steepened the lapse rate and thus reduced the static stability in cloudy regions,enhancing convection.Diabatic heating associated with outer convection induced boundary layer inflows,which led to outward expansion of tangential winds and thus increased the storm size.展开更多
A sustained heavy rainfall event occurred over the Sichuan basin in southwest China during 10–18 August 2020,showing pronounced diurnal rainfall variations with nighttime peak and afternoon minimum values,except on t...A sustained heavy rainfall event occurred over the Sichuan basin in southwest China during 10–18 August 2020,showing pronounced diurnal rainfall variations with nighttime peak and afternoon minimum values,except on the first day.Results show that the westward extension of the anomalously strong western Pacific subtropical high was conducive to the maintenance of a southerly low-level jet(LLJ)in and to the southeast of the basin,which favored continuous water vapor transport and abnormally high precipitable water in the basin.The diurnal cycle of rainfall over the basin was closely related to the periodic oscillation of the LLJ in both wind speed and direction that was caused by the combination of inertial oscillation and terrain thermal forcing.The nocturnally enhanced rainfall was produced by moist convection mostly initiated during the evening hours over the southwest part of the basin where high convective available potential energy with moister near-surface moist air was present.The convective initiation took place as cold air from either previous precipitating clouds from the western Sichuan Plateau or a larger-scale northerly flow met a warm and humid current from the south.It was the slantwise lifting of the warm,moist airflow above the cold air,often facilitated by southwest vortices and quasi-geostrophic ascent,that released the convective instability and produced heavy rainfall.展开更多
The characteristics of the summer precipitation diurnal cycle over South Asia and East Asia during 2001–13 are investigated based on the high spatiotemporal resolution estimates of the CPC(Climate Prediction Center) ...The characteristics of the summer precipitation diurnal cycle over South Asia and East Asia during 2001–13 are investigated based on the high spatiotemporal resolution estimates of the CPC(Climate Prediction Center) Morphing(CMORPH) technique. The results show that summer precipitation over South Asia and East Asia possesses a remarkable diurnal cycle, with obvious regional differences. Over the coastal areas, plateau, and high mountains, summer precipitation peaks in the late afternoon; while over low altitude areas, such as valleys, basins, and inshore seas, it peaks during midnight to early morning. In addition to these general features consistent with previous studies, the high resolution CMORPH technique can depict finer regional details, such as the less coherent phase pattern over a few regions. Besides, through comparative analysis of the diurnal cycle strength and precipitation fields, the authors find that for humid areas the summer precipitation diurnal cycle is especially significant over Southeast China, the Sichuan Basin, Hainan Province, Taiwan Province, the Philippines, and Indonesia. And it is relatively weak over the south of Northeast China, central East China, Yunnan Province, the central Indian Peninsula, and most oceanic areas. Comparisons between two satellite datasets—those of the CMORPH and Tropical Rainfall Measuring Mission(TRMM) 3B42 products—are also presented. For summer precipitation and the main diurnal cycle features, the results from both products agree over most regions, except a few areas, e.g., the Tibetan Plateau.展开更多
Based on idealized numerical simulations, the impacts of the diurnal cycle of solar radiation on the diurnal variation of outer rainbands in a tropical cyclone are examined. It is found that cold pools associated with...Based on idealized numerical simulations, the impacts of the diurnal cycle of solar radiation on the diurnal variation of outer rainbands in a tropical cyclone are examined. It is found that cold pools associated with precipitation-driven downdrafts are essential for the growth and propagation of spiral rainbands. The downdrafts result in surface outflows, which act as a lifting mechanism to trigger the convection cell along the leading edge of the cold pools. The diurnal cycle of solar radiation may modulate the diurnal behavior of the spiral rainbands. In the daytime, shortwave radiation will suppress the outer convection and thus weaken the cold pools. Meanwhile, the limited cold pool activity leads to a strong modification of the moisture field, which in turn inhibits further convection development.展开更多
Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined ...Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined from the radiosonde data by the bulk Richardson number(BRN)method and verified by the parcel method and the potential temperature gradient method.In general,the BRN method is able to represent the height of the convective boundary layer(BL)and neutral residual layer cases but has relatively large uncertainty in the stable BL cases.The diurnal cycle of the PBLH over land is quite different from the cycle over ocean,as are their seasonal variations.For stations over land,the PBLH shows an apparent diurnal cycle,with a distinct maximum around 15:00 LT,and seasonal variation,with higher values in summer.Compared with the PBLH over land,over oceans the PBLH diurnal cycles are quite mild,the PBLHs are much lower,and the seasonal changes are less pronounced.The seasonal variations in the median PBLH diurnal cycle are positively correlated with the near-surface temperature and negatively correlated with the near-surface relative humidity.Finally,although at most latitudes the daytime PBLH exhibits,over these 45 years,a statistically significant increasing trend at most hours between 12:00 LT and 18:00 LT over both land and ocean,there is no significant trend over either land or ocean in the nighttime PBLH for almost all the studied latitudes.展开更多
This study examined the characteristics of the diurnal variations of heavy rainfall(≥110 mm in 12 hours)in Korea and the related atmospheric circulation for July from 1980−2020.During the analysis period,two dominant...This study examined the characteristics of the diurnal variations of heavy rainfall(≥110 mm in 12 hours)in Korea and the related atmospheric circulation for July from 1980−2020.During the analysis period,two dominant pattens of diurnal variation of the heavy rainfall emerged:all-day heavy rainfall(AD)and morning only heavy rainfall(MO)types.For the AD-type,the heavy rainfall is caused by abundant moisture content in conjunction with active convection in the morning(0000−1200,LST;LST=UTC+9)and the afternoon hours(1200−2400 LST).These systems are related to the enhanced moisture inflow and upward motion induced by the strengthening of the western North Pacific subtropical high and upper-tropospheric jet.For the MO-type,heavy rainfall occurs mostly in the morning hours;the associated atmospheric patterns are similar to the climatology.We find that the atmospheric pattern related to severe heavy rainfalls in 2020 corresponds to a typical AD-type and resembles the 1991 heavy-rainfall system in its overall synoptic/mesoscale circulations.The present results imply that extremely heavy rainfall episodes in Korea during the 2020 summer may occur again in the future associated with the recurring atmospheric phenomenon related to the heavy rainfall.展开更多
Based on the method of estimating the diurnal amplitude of sea surface temperature (SST) as a function of daily averaged wind speed, precipitation and peak surface radiation, a parameterization scheme of diurnal cycle...Based on the method of estimating the diurnal amplitude of sea surface temperature (SST) as a function of daily averaged wind speed, precipitation and peak surface radiation, a parameterization scheme of diurnal cycle of SST is developed in the present study. Integrations to National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3), separately forced by observed weekly SSTs with and without diurnal cycle of SST, are compared. Surface observation obtained from the Improved Meteorology (IMET) buoy during TOGA COARE Intensive Observation Period is applied to verify the SST parameterization, as well as a validation to the results from the CCM3 simulation. It is shown that the superposition of diurnal cycle of SST to the forced weekly SST makes a more realistic representation of the surface structure of intraseasonal oscillation over the western Pacific warm pool.展开更多
The need to investigate diurnal weather cycles in West Africa originates from the fact that complex interactions often result between mesoscale and synoptic weather processes. This study investigates diurnal cycles of...The need to investigate diurnal weather cycles in West Africa originates from the fact that complex interactions often result between mesoscale and synoptic weather processes. This study investigates diurnal cycles of rainfall and convective properties using six (6) hour interval data from the ERA-Interim and derived products from the Tropical Rainfall Measurement Mission (TRMM). Results showed that the land<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">ocean warming contrast is more strongly sensitive to </span><span style="font-family:Verdana;">the seasonal cycle, being very weak during March</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">May (MAM) but clearly spelled out during June</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">September (JJAS). Dipoles of wind convergence/divergence</span><span style="font-family:Verdana;"> and wet/dry precipitation, between CASS and Nigeria Savannah zones, were identified in the morning and evening hours of MAM, whereas distinct night and day anomalies, same location in CASS, were found to be consistent during the JJAS season. The locations of flash count and system sizes agree with the climatology of convective properties, that morning and day-time hours are dominated by stratiform precipitation and small system sizes. Most results clearly showed that the eastern locations of Sudano and Sahel are consistently dry because rainfall and precipitation features are predominantly few. Very unique results about the dipole of wind and precipitation between two zones and the unusual dry zones of Sudan and Sahel have been found. Results presented had shown the importance of diurnal variation in understanding precipitation, flash count, system sizes patterns at diurnal scales, and understanding land-ocean contrast, precipitation and wind field anomaly at diurnal scales.</span>展开更多
Precipitation measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite indicate that the southeastern area of Kalimantan (Borneo) Island receives much less rainfall than elsewhere on the island durin...Precipitation measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite indicate that the southeastern area of Kalimantan (Borneo) Island receives much less rainfall than elsewhere on the island during the period from July to October.Results from sur-face meteorological observations show that the diurnal cycle of rainfall differs greatly between the eastern and western coasts of the island.Rainfall on the western coast of the island is frequent in the afternoon and evening,whereas almost all rainfall on the eastern coast occurs in the morning.Meanwhile,the Global Positioning System (GPS)-derived precipitable water (PW) on the eastern coast shows a substantial decrease in moisture in the af-ternoon and evening.Numerical experiments with a mesoscale model reveal that gravity waves driven by di-urnal heating of the elevated land surface of the moun-tains on Sulawesi Island,which lies approximately 300 kilometers to the east of Kalimantan Island,significantly affect the diurnal cycle of rainfall over southeast Kali-mantan Island.展开更多
Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rai...Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.展开更多
An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitatio...An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale.展开更多
The High Resolution Model Intercomparison Project(HighResMIP)is a unique model intercomparison project in phase 6 of the Coupled Model Intercomparison Project(CMIP6),which is focused on the impact of horizontal resolu...The High Resolution Model Intercomparison Project(HighResMIP)is a unique model intercomparison project in phase 6 of the Coupled Model Intercomparison Project(CMIP6),which is focused on the impact of horizontal resolutions.The outputs of the high-and low-resolution versions of CAS FGOALS-f3-H and CAS FGOALS-f3-L for the experiments of the HighResMIP simulations in CMIP6 are described in this paper.The models and their configurations,experimental settings,and postprocessing methods are all introduced.CAS FGOALS-f3-H,with a 0.25°horizontal resolution,and CAS FGOALS-f3-L,with a 1°horizontal resolution,were forced by the standard external conditions,and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of‘highresSST-present’and‘highresSST-future’,respectively.The model outputs contain multiple time scales including the required hourly mean,three-hourly mean,six-hourly transient,daily mean,and monthly mean datasets.It is reported that the 0.25°CAS FGOALS-f3-H successfully simulates some of the key challenges in climate modeling,including the average lifetime of tropical cyclones,particularly in the western parts of the northern Pacific Ocean,and the diurnal cycle of hourly precipitation.These datasets will contribute to the benchmarking of current models for CMIP,and studies of the impacts of horizontal resolutions on climate modeling issues.展开更多
A double-plume convective parameterization scheme is revised to improve the precipitation simulation of a global model(Global-to-Regional Integrated Forecast System;GRIST).The improvement is achieved by considering th...A double-plume convective parameterization scheme is revised to improve the precipitation simulation of a global model(Global-to-Regional Integrated Forecast System;GRIST).The improvement is achieved by considering the effects of large-scale dynamic processes on the trigger of deep convection.The closure,based on dynamic CAPE,is improved accordingly to allow other processes to consume CAPE under the more restricted convective trigger condition.The revised convective parameterization is evaluated with a variable-resolution model setup(110–35 km,refined over East Asia).The Atmospheric Model Intercomparison Project(AMIP)simulations demonstrate that the revised convective parameterization substantially delays the daytime precipitation peaks over most land areas,leading to an improved simulated diurnal cycle,evidenced by delayed and less frequent afternoon precipitation.Meanwhile,changes to the threshold of the trigger function yield a small impact on the diurnal amplitude of precipitation because of the consistent setting of dCAPE-based trigger and closure.The simulated mean precipitation remains reasonable,with some improvements evident along the southern slopes of the Tibetan Plateau.The revised scheme increases convective precipitation at the lower levels of the windward slope and reduces the large-scale precipitation over the upper slope,ultimately shifting the rainfall peak southward,which is in better agreement with the observations.展开更多
Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45...Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.展开更多
Mesoscale convective system (MCS) cloud clusters,defined using an objective recognition analysis based on hourly geostationary infrared satellite data over East Asia during the warm seasons of 1996-2008 (except 2004),...Mesoscale convective system (MCS) cloud clusters,defined using an objective recognition analysis based on hourly geostationary infrared satellite data over East Asia during the warm seasons of 1996-2008 (except 2004),were investigated in this study.The geographical pattern of MCS distribution over East Asia shows several high-frequency centers at low latitudes,including the Indo-China peninsula,the Bay of Bengal,the Andaman Sea,the Brahmaputra river delta,the south China coastal region,and the Philippine Islands.There are several middle-frequency centers in the middle latitudes,e.g.,the central-east of the Tibet Plateau,the Plateau of west Sichuan,Mount Wuyi,and the Sayan Mountains in Russia;whereas in Lake Baikal,the Tarim Basin,the Taklimakan Desert,the Sea of Japan,and the Sea of Okhotsk,rare MCS distributions are observed.MCSs are most intensely active in summer,with the highest monthly frequency in July,which is partly associated with the breaking out and prevailing of the summer monsoon in East Asia.An obvious diurnal cycle feature is also found in MCS activities,which shows that MCSs are triggered in the afternoon,mature in the evening,and dissipate at night.MCS patterns over East Asia can be characterized as small,short-lived,or elongated,which move slowly and usually lead to heavy rains or floods.展开更多
An integrated satellite precipitation estimation dataset, namely, the Climate Prediction Center morphing method (CMORPH), was used to analyze precipitation regimes across Equatorial Africa between 3<span style=&quo...An integrated satellite precipitation estimation dataset, namely, the Climate Prediction Center morphing method (CMORPH), was used to analyze precipitation regimes across Equatorial Africa between 3<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">S - 1</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">N and 24</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">E - 42</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">E from 2000 to 2014. This region includes the Rift Valley, part of the Congo Forest, and the Lake Victoria (LV) basin, the second largest lake in the area of the world. Hovm<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">ö</span></span>ller diagrams were obtained for all organized convective systems to estimate their spans, duration, and phase speeds. The analysis included 33,189 episodes of westward propagating convective systems. Within the study area, lake and land breezes tend to trigger convection and precipitation over LV as well as mountain-valley circulation trigger thunderstorms over the mountains east of LV and western Rift Valley. The statistics of convective systems streaks on longitude-time diagrams were obtained for yearly frequencies of starting and ending longitudes and times among other morphologic variables. Results indicate organized precipitation episodes tend to move westward across Rift valley and Congo forest with an average phase speed of 10.3 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. More than 50% of them are triggered over LV and propagate more than 600 km at an average phase speed of 12.1 m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup><span style="font-family:Verdana;"><span style="white-space:normal;color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span style="font-family:Verdana;white-space:normal;"></span></span><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">. These convective systems tend to produce high rainfall rates hundreds of kilometers away into the Congo Forest. Half of all episodes of organized convection analyzed have phase speeds between 8 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;"> and 16 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">, lasting 8 hr to 16 hr. Most precipitating systems start east of LV and west of Rift Valley in the afternoon to early morning and propagates less than 400 km. Finally, hourly precipitation accumulation and lightning density analysis indicate three preferable regions for convective initiation: 1) The mountain range east of LV;2) Midwest of LV, and;3) The Congo Forest mountain range.</span></span></span></span>展开更多
基金This work was jointly supported by the National Natural Science Foundation of China,the Major National Basic Research Program of China (973 Program)on Global Change
文摘This study analyzed the interdecadal changes in the diurnal variability of summer (June-August) precipitation over eastern China during the period 1966 2005 using hourly station rain gauge data. The results revealed that rainfall diurnal variations experienced significant interdecadal changes. Over the area to the south of the Yangtze River, as well as the area between the Yangtze and Yellow Rivers, the percentages of morning rainfall (0000 1200 LST) to total rainfall in terms of amount, frequency and intensity, all exhibited increasing interdecadal trends. On the contrary, over North China, decreasing trends were found. As a result, diurnal rainfall peaks also presented pronounced interdecadal variations. Over the area between the Yangtze and Yellow Rivers, there were 16 out of 46 stations with afternoon (1200-0000 LST) frequency peaks in the first 20 years of the 40-year period of study, while only eight remained in the latter 20 years. In North China, seven stations experienced the opposite changes, which accounted for about 21% of the total number of stations. The possible causes for the interdecadal changes in diurnal features were discussed. As the rainfall in the active monsoon period presents morning diurnal peaks, with afternoon peaks in the break period, the decrease (increase) of rainfall in the active monsoon period over North China (the area south of the Yangtze River and the area between the Yangtze and Yellow Rivers) may contribute to interdecadal changes in diurnal rainfall variability.
基金supported by National Key Basic Research Program of China (GrantNo. 2006CB400500)National Natural Science Founda-tion of China under Grant Nos. 40775050, 40405014Knowledge Innovation Project of Chinese Academy Sci-ences (IAP07210).
文摘The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmosphere coupling in which soil moisture is the crucial variable in land surface processes. In this paper, we investigate the sensitivity of the sensible/latent heat fluxes to soil moisture during the growing season based on the enhanced observations at Tongyu in the Jilin province of China, a reference site of international Coordinated Energy and Water Cycle Observations Project (CEOP) in the semi-arid regions, by using a sophisticated land surface model (NCAR_CLM3.0). Comparisons between the observed and simulated sensible/latent heat fluxes indicate that the soil moisture has obvious effects on the sensible/latent heat fluxes in terms of diurnal cycle and seasonal evolution. Better representation of the soil moisture could improve the model performance to a large degree. Therefore, for the purpose of simulating the land-atmosphere interaction and predicting the climate and water resource changes in semi-arid regions, it is necessary to enhance the description of the soil moisture distribution both in the way of observation and its treatment in land surface models.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375153,42075151).
文摘In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas.
基金supported by the Major National Basic Research Program of China (973 Program) on Global Change (Grant No.2010CB951902)the National Natural Science Foundation of China (Grant Nos. 40625014,40705025,40921003,and 41005044)
文摘In this study, records from a 3-yr intensified observational experiment at eight stations along the hillside of Seqilashan over the southeastern Tibetan Plateau were analyzed and combined with records at 28 routine observation stations in the Chinese National Meteorological Station Network to investigate the influences of station location on the different diurnal rainfall variations between station records and Tropical Rainfall Measuring Mission (TRMM) data products. The results indicate that the diurnal variation of warm season rainfall is closely related to location of stations. The prevailing nocturnal rainfall peak in observations at routine stations can be largely attributed to the relatively lower location of the stations, which are mostly situated in valleys. The records at Seqilashan stations on hillsides revealed an evident diurnal afternoon peak of warm season rainfall, similar to that indicated by TRMM data. The different diurnal phases between valley and hillside stations are closely related to the orographically induced regional circulations caused by the complex topography over the Tibetan Plateau. The results of this study indicate that the prevailing nocturnal rainfall associated with the relatively lower location of routine observation stations can partially explain the diurnal rainfall variations between observation station records and TRMM data.
基金sponsored by the National Natural Science Foundation of China (Grant Nos. 41275095, 41075037)the National Key Basic Research Program of China (Grant No.2012CB955204)the Key University Science Research Project of Jiangsu Province (Grant No.14KJA170005)
文摘To investigate the impacts of the diurnal cycle on tropical cyclones (TCs),a set of idealized simulations were conducted by specifying different radiation (i.e.,nighttime-only,daytime-only,full diurnal cycle).It was found that,for an initially weak storm,it developed faster during nighttime than daytime.The impacts of radiation were not only on TC intensification,but also on TC structure and size.The nighttime storm tended to have a larger size than its daytime counterparts.During nighttime,the radiative cooling steepened the lapse rate and thus reduced the static stability in cloudy regions,enhancing convection.Diabatic heating associated with outer convection induced boundary layer inflows,which led to outward expansion of tangential winds and thus increased the storm size.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.41775050,91937301,41775002,42005008)the Science Development Fund of Chinese of Academy of Meteorological Sciences(2020KJ022).
文摘A sustained heavy rainfall event occurred over the Sichuan basin in southwest China during 10–18 August 2020,showing pronounced diurnal rainfall variations with nighttime peak and afternoon minimum values,except on the first day.Results show that the westward extension of the anomalously strong western Pacific subtropical high was conducive to the maintenance of a southerly low-level jet(LLJ)in and to the southeast of the basin,which favored continuous water vapor transport and abnormally high precipitable water in the basin.The diurnal cycle of rainfall over the basin was closely related to the periodic oscillation of the LLJ in both wind speed and direction that was caused by the combination of inertial oscillation and terrain thermal forcing.The nocturnally enhanced rainfall was produced by moist convection mostly initiated during the evening hours over the southwest part of the basin where high convective available potential energy with moister near-surface moist air was present.The convective initiation took place as cold air from either previous precipitating clouds from the western Sichuan Plateau or a larger-scale northerly flow met a warm and humid current from the south.It was the slantwise lifting of the warm,moist airflow above the cold air,often facilitated by southwest vortices and quasi-geostrophic ascent,that released the convective instability and produced heavy rainfall.
基金supported by the National Basic Research Program of China(Grant No.2013CB430201)the China Meteorological Administration Special Fund for Scientific Research in the Public Interest(Grant No.GYHY201206008)
文摘The characteristics of the summer precipitation diurnal cycle over South Asia and East Asia during 2001–13 are investigated based on the high spatiotemporal resolution estimates of the CPC(Climate Prediction Center) Morphing(CMORPH) technique. The results show that summer precipitation over South Asia and East Asia possesses a remarkable diurnal cycle, with obvious regional differences. Over the coastal areas, plateau, and high mountains, summer precipitation peaks in the late afternoon; while over low altitude areas, such as valleys, basins, and inshore seas, it peaks during midnight to early morning. In addition to these general features consistent with previous studies, the high resolution CMORPH technique can depict finer regional details, such as the less coherent phase pattern over a few regions. Besides, through comparative analysis of the diurnal cycle strength and precipitation fields, the authors find that for humid areas the summer precipitation diurnal cycle is especially significant over Southeast China, the Sichuan Basin, Hainan Province, Taiwan Province, the Philippines, and Indonesia. And it is relatively weak over the south of Northeast China, central East China, Yunnan Province, the central Indian Peninsula, and most oceanic areas. Comparisons between two satellite datasets—those of the CMORPH and Tropical Rainfall Measuring Mission(TRMM) 3B42 products—are also presented. For summer precipitation and the main diurnal cycle features, the results from both products agree over most regions, except a few areas, e.g., the Tibetan Plateau.
基金sponsored by the National Science Foundation of China (Grant No. 41575056)the Key Basic Research Program of China (Grant No. 2015CB452803)+2 种基金the State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences (Grant No. 2014LASW-B08)a “Six Peaks of High-Level Talents” funded projectthe Key University Science Research Project of Jiangsu Province (Grant No. 14KJA170005)
文摘Based on idealized numerical simulations, the impacts of the diurnal cycle of solar radiation on the diurnal variation of outer rainbands in a tropical cyclone are examined. It is found that cold pools associated with precipitation-driven downdrafts are essential for the growth and propagation of spiral rainbands. The downdrafts result in surface outflows, which act as a lifting mechanism to trigger the convection cell along the leading edge of the cold pools. The diurnal cycle of solar radiation may modulate the diurnal behavior of the spiral rainbands. In the daytime, shortwave radiation will suppress the outer convection and thus weaken the cold pools. Meanwhile, the limited cold pool activity leads to a strong modification of the moisture field, which in turn inhibits further convection development.
基金This work was supported by the Meteorological Research Open Foundation of Huaihe Basin(HRM201604).
文摘Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined from the radiosonde data by the bulk Richardson number(BRN)method and verified by the parcel method and the potential temperature gradient method.In general,the BRN method is able to represent the height of the convective boundary layer(BL)and neutral residual layer cases but has relatively large uncertainty in the stable BL cases.The diurnal cycle of the PBLH over land is quite different from the cycle over ocean,as are their seasonal variations.For stations over land,the PBLH shows an apparent diurnal cycle,with a distinct maximum around 15:00 LT,and seasonal variation,with higher values in summer.Compared with the PBLH over land,over oceans the PBLH diurnal cycles are quite mild,the PBLHs are much lower,and the seasonal changes are less pronounced.The seasonal variations in the median PBLH diurnal cycle are positively correlated with the near-surface temperature and negatively correlated with the near-surface relative humidity.Finally,although at most latitudes the daytime PBLH exhibits,over these 45 years,a statistically significant increasing trend at most hours between 12:00 LT and 18:00 LT over both land and ocean,there is no significant trend over either land or ocean in the nighttime PBLH for almost all the studied latitudes.
基金This work was supported by the Korea Meteorological Administration Research and Development Program(Chang-Hoi HO and Minhee CHANG:KMI2020-00610)the National Research Foundation of Korea(NRF)funded by the Korea government(MSIT)(Kyung-Ja HA:2020R1A2C2006860,Chang-Kyun PARK:2021R1C1C2004711)Development and Assessment of AR6 Climate Change Scenarios(Jinwon KIM:KMA2018-00321).
文摘This study examined the characteristics of the diurnal variations of heavy rainfall(≥110 mm in 12 hours)in Korea and the related atmospheric circulation for July from 1980−2020.During the analysis period,two dominant pattens of diurnal variation of the heavy rainfall emerged:all-day heavy rainfall(AD)and morning only heavy rainfall(MO)types.For the AD-type,the heavy rainfall is caused by abundant moisture content in conjunction with active convection in the morning(0000−1200,LST;LST=UTC+9)and the afternoon hours(1200−2400 LST).These systems are related to the enhanced moisture inflow and upward motion induced by the strengthening of the western North Pacific subtropical high and upper-tropospheric jet.For the MO-type,heavy rainfall occurs mostly in the morning hours;the associated atmospheric patterns are similar to the climatology.We find that the atmospheric pattern related to severe heavy rainfalls in 2020 corresponds to a typical AD-type and resembles the 1991 heavy-rainfall system in its overall synoptic/mesoscale circulations.The present results imply that extremely heavy rainfall episodes in Korea during the 2020 summer may occur again in the future associated with the recurring atmospheric phenomenon related to the heavy rainfall.
基金This study was sponsored by Chinese Academy of Sciences under Grant " Hundred Talents" for" Validation of Coupled Climate Mode
文摘Based on the method of estimating the diurnal amplitude of sea surface temperature (SST) as a function of daily averaged wind speed, precipitation and peak surface radiation, a parameterization scheme of diurnal cycle of SST is developed in the present study. Integrations to National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3), separately forced by observed weekly SSTs with and without diurnal cycle of SST, are compared. Surface observation obtained from the Improved Meteorology (IMET) buoy during TOGA COARE Intensive Observation Period is applied to verify the SST parameterization, as well as a validation to the results from the CCM3 simulation. It is shown that the superposition of diurnal cycle of SST to the forced weekly SST makes a more realistic representation of the surface structure of intraseasonal oscillation over the western Pacific warm pool.
文摘The need to investigate diurnal weather cycles in West Africa originates from the fact that complex interactions often result between mesoscale and synoptic weather processes. This study investigates diurnal cycles of rainfall and convective properties using six (6) hour interval data from the ERA-Interim and derived products from the Tropical Rainfall Measurement Mission (TRMM). Results showed that the land<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">ocean warming contrast is more strongly sensitive to </span><span style="font-family:Verdana;">the seasonal cycle, being very weak during March</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">May (MAM) but clearly spelled out during June</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">September (JJAS). Dipoles of wind convergence/divergence</span><span style="font-family:Verdana;"> and wet/dry precipitation, between CASS and Nigeria Savannah zones, were identified in the morning and evening hours of MAM, whereas distinct night and day anomalies, same location in CASS, were found to be consistent during the JJAS season. The locations of flash count and system sizes agree with the climatology of convective properties, that morning and day-time hours are dominated by stratiform precipitation and small system sizes. Most results clearly showed that the eastern locations of Sudano and Sahel are consistently dry because rainfall and precipitation features are predominantly few. Very unique results about the dipole of wind and precipitation between two zones and the unusual dry zones of Sudan and Sahel have been found. Results presented had shown the importance of diurnal variation in understanding precipitation, flash count, system sizes patterns at diurnal scales, and understanding land-ocean contrast, precipitation and wind field anomaly at diurnal scales.</span>
基金Messrs Syamsul Huda and Suwarti of the BMG,Indonesia for their great support for the observations in this study
文摘Precipitation measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite indicate that the southeastern area of Kalimantan (Borneo) Island receives much less rainfall than elsewhere on the island during the period from July to October.Results from sur-face meteorological observations show that the diurnal cycle of rainfall differs greatly between the eastern and western coasts of the island.Rainfall on the western coast of the island is frequent in the afternoon and evening,whereas almost all rainfall on the eastern coast occurs in the morning.Meanwhile,the Global Positioning System (GPS)-derived precipitable water (PW) on the eastern coast shows a substantial decrease in moisture in the af-ternoon and evening.Numerical experiments with a mesoscale model reveal that gravity waves driven by di-urnal heating of the elevated land surface of the moun-tains on Sulawesi Island,which lies approximately 300 kilometers to the east of Kalimantan Island,significantly affect the diurnal cycle of rainfall over southeast Kali-mantan Island.
基金supported by the R & D Special Fund for Public Welfare Industry (meteorology)(GYHY201106018)National Key Program for Developing Basic Sciences (Grant No. 2006CB400503)
文摘Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.
基金supported by Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42122033,41875055,and 42075006)Guangzhou Science and Technology Plan Projects(202002030346 and 202002030196).
文摘An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale.
基金jointly funded by the Strategic Priority Research Program of Chinese Academy of Sciences grant number XDB40030205the National Natural Science Foundation of China grant numbers 91737306,41675100,and U1811464。
文摘The High Resolution Model Intercomparison Project(HighResMIP)is a unique model intercomparison project in phase 6 of the Coupled Model Intercomparison Project(CMIP6),which is focused on the impact of horizontal resolutions.The outputs of the high-and low-resolution versions of CAS FGOALS-f3-H and CAS FGOALS-f3-L for the experiments of the HighResMIP simulations in CMIP6 are described in this paper.The models and their configurations,experimental settings,and postprocessing methods are all introduced.CAS FGOALS-f3-H,with a 0.25°horizontal resolution,and CAS FGOALS-f3-L,with a 1°horizontal resolution,were forced by the standard external conditions,and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of‘highresSST-present’and‘highresSST-future’,respectively.The model outputs contain multiple time scales including the required hourly mean,three-hourly mean,six-hourly transient,daily mean,and monthly mean datasets.It is reported that the 0.25°CAS FGOALS-f3-H successfully simulates some of the key challenges in climate modeling,including the average lifetime of tropical cyclones,particularly in the western parts of the northern Pacific Ocean,and the diurnal cycle of hourly precipitation.These datasets will contribute to the benchmarking of current models for CMIP,and studies of the impacts of horizontal resolutions on climate modeling issues.
基金supported by the National Key R&D Program of China on the Monitoring,Early Warning,and Prevention of Major Natural Disasters(Grant Nos.2018YFC1507005 and 02017YFC1502202)。
文摘A double-plume convective parameterization scheme is revised to improve the precipitation simulation of a global model(Global-to-Regional Integrated Forecast System;GRIST).The improvement is achieved by considering the effects of large-scale dynamic processes on the trigger of deep convection.The closure,based on dynamic CAPE,is improved accordingly to allow other processes to consume CAPE under the more restricted convective trigger condition.The revised convective parameterization is evaluated with a variable-resolution model setup(110–35 km,refined over East Asia).The Atmospheric Model Intercomparison Project(AMIP)simulations demonstrate that the revised convective parameterization substantially delays the daytime precipitation peaks over most land areas,leading to an improved simulated diurnal cycle,evidenced by delayed and less frequent afternoon precipitation.Meanwhile,changes to the threshold of the trigger function yield a small impact on the diurnal amplitude of precipitation because of the consistent setting of dCAPE-based trigger and closure.The simulated mean precipitation remains reasonable,with some improvements evident along the southern slopes of the Tibetan Plateau.The revised scheme increases convective precipitation at the lower levels of the windward slope and reduces the large-scale precipitation over the upper slope,ultimately shifting the rainfall peak southward,which is in better agreement with the observations.
基金supported by the National Key Research Program of China [grant number 2016YFB0200805)the National Natural Science Foundation of China [grant number 41575089]
文摘Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.
基金supported by the National Basic Research Program of China(973Program,Grant No.2011CB309704)the Ministry of Finance of China and the China Meteorological Administration for the Special Project of Meteorological Sector(Grant No.GYHY(QX)201006014)the National Natural Science Foundation of China(Grant No.40875022)
文摘Mesoscale convective system (MCS) cloud clusters,defined using an objective recognition analysis based on hourly geostationary infrared satellite data over East Asia during the warm seasons of 1996-2008 (except 2004),were investigated in this study.The geographical pattern of MCS distribution over East Asia shows several high-frequency centers at low latitudes,including the Indo-China peninsula,the Bay of Bengal,the Andaman Sea,the Brahmaputra river delta,the south China coastal region,and the Philippine Islands.There are several middle-frequency centers in the middle latitudes,e.g.,the central-east of the Tibet Plateau,the Plateau of west Sichuan,Mount Wuyi,and the Sayan Mountains in Russia;whereas in Lake Baikal,the Tarim Basin,the Taklimakan Desert,the Sea of Japan,and the Sea of Okhotsk,rare MCS distributions are observed.MCSs are most intensely active in summer,with the highest monthly frequency in July,which is partly associated with the breaking out and prevailing of the summer monsoon in East Asia.An obvious diurnal cycle feature is also found in MCS activities,which shows that MCSs are triggered in the afternoon,mature in the evening,and dissipate at night.MCS patterns over East Asia can be characterized as small,short-lived,or elongated,which move slowly and usually lead to heavy rains or floods.
文摘An integrated satellite precipitation estimation dataset, namely, the Climate Prediction Center morphing method (CMORPH), was used to analyze precipitation regimes across Equatorial Africa between 3<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">S - 1</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">N and 24</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">E - 42</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">E from 2000 to 2014. This region includes the Rift Valley, part of the Congo Forest, and the Lake Victoria (LV) basin, the second largest lake in the area of the world. Hovm<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">ö</span></span>ller diagrams were obtained for all organized convective systems to estimate their spans, duration, and phase speeds. The analysis included 33,189 episodes of westward propagating convective systems. Within the study area, lake and land breezes tend to trigger convection and precipitation over LV as well as mountain-valley circulation trigger thunderstorms over the mountains east of LV and western Rift Valley. The statistics of convective systems streaks on longitude-time diagrams were obtained for yearly frequencies of starting and ending longitudes and times among other morphologic variables. Results indicate organized precipitation episodes tend to move westward across Rift valley and Congo forest with an average phase speed of 10.3 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. More than 50% of them are triggered over LV and propagate more than 600 km at an average phase speed of 12.1 m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup><span style="font-family:Verdana;"><span style="white-space:normal;color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span style="font-family:Verdana;white-space:normal;"></span></span><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">. These convective systems tend to produce high rainfall rates hundreds of kilometers away into the Congo Forest. Half of all episodes of organized convection analyzed have phase speeds between 8 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;"> and 16 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">, lasting 8 hr to 16 hr. Most precipitating systems start east of LV and west of Rift Valley in the afternoon to early morning and propagates less than 400 km. Finally, hourly precipitation accumulation and lightning density analysis indicate three preferable regions for convective initiation: 1) The mountain range east of LV;2) Midwest of LV, and;3) The Congo Forest mountain range.</span></span></span></span>