Partially modified Bt Cry1Ac gene and the arrowhead proteinase inhibitor (API) gene were used to construct a plant transformation vector pBtiA and this construct was transferred into the genome of the hybrid popla...Partially modified Bt Cry1Ac gene and the arrowhead proteinase inhibitor (API) gene were used to construct a plant transformation vector pBtiA and this construct was transferred into the genome of the hybrid poplar 741 [ Populus alba L.×( P. davidiana Dode+ P. simonii Carr.)× P. tomentosa Carr.] by Agrobacterium _ mediated transformation. Ten kanamycin resistant plants have been regenerated. Upon insect bioassay using Clostera anachoreta (Fabricius), three of the examined plants were demonstrated to be highly resistant to the testing insects. The mortality of insect larvae on one plant was higher than 90% in 6 days after infestation and the growth of the survival larvae were seriously inhibited. Results of PCR and Southern blot analysis indicated that both Bt Cry1Ac gene and API gene were integrated as a single copy into the genomes of these three plants when Cry1Ac gene fragment was used as the probe. Protein dot blot immunoassay and ELISA analysis revealed that at least the Cry1Ac protein was produced in these three transgenic plants and the expression levels were estimated to be approximately 0.015% of the leaf total soluble protein. This is the first report on insect resistant transgenic hybrid poplar 741 that expresses two insecticidal protein genes.展开更多
[Objective] This study aimed to investigate the frequency of exogenous gene flow to non-transgenic conventional rice cultivars and assess the potential risks of marker-free of insect-resistant transgenic rice to agric...[Objective] This study aimed to investigate the frequency of exogenous gene flow to non-transgenic conventional rice cultivars and assess the potential risks of marker-free of insect-resistant transgenic rice to agricultural ecological environment. [Method] Insect-resistant transgenic rice variety HUAHUI No.1 was planted as the experimental material and surrounded by several non-transgenic conventional rice cultivars. F1 non-transgenic rice seeds were collected according to different distances and identified by using PCR technology, the frequency of exogenous gene flow from insect-resistant transgenic rice to non-transgenic conventional rice cultivars was counted and analyzed. [Result] The average frequency of exogenous Bt gene flow to P13381 and CHUNJIANG063 was 0. Transgene flow occurred to varying degrees from insect-resistant transgenic rice HUAHUI No.1 to several non-transgenic rice lines including HEX122-2, TIANXlANG, MINGHUI63 and Pl157, with the maximum average gene flow frequency of 0.875%. The frequency of gene flow was gradually reduced with the increase of distance, and the average transgene flow frequency de- creased to 0 in all the sampling points 7 m away from transgenic rice material. [Conclusion] This study revealed that the exogenous gene flow frequency of insect-re- sistant transgenic rice variety HUAHUI No.1 was very low, leading to very small risk to the eco-environment. Rational distribution in the field for physical isolation, keeping the appropriate distance and scientific farming arrangement to avoid the synchronization of flowering can effectively control the exogenous gene flow from transgenic rice and reduce he ecological risks caused by transgene escape.展开更多
In order to promote the research of transgenic insect-resistant maize,the target gene were transferred into maize material Hi-Ⅱ by Agrobacterium-mediated genetic transformation of maize embryos,and maize plants with ...In order to promote the research of transgenic insect-resistant maize,the target gene were transferred into maize material Hi-Ⅱ by Agrobacterium-mediated genetic transformation of maize embryos,and maize plants with CryNGc insect-resistant genes were cultured by explant infection,co-culture and differentiation screening to study the genetic expression and resistance of exogenous genes in the offspring.The results showed that the infection effect was the best when the size of young maize embryo was 1.2-1.8 mm.Ten positive transformed plants with CryNGc insect-resistant genes were successfully obtained,and the transformation efficiency was 1.428‰.展开更多
A chimeric gene, Bt29K, composed of coding sequences of activated Cry1Ac insecticidal protein and an endoplasm reticulum-retarding signal peptide, was synthesized. A plant expression vector containing two expression c...A chimeric gene, Bt29K, composed of coding sequences of activated Cry1Ac insecticidal protein and an endoplasm reticulum-retarding signal peptide, was synthesized. A plant expression vector containing two expression cassettes for the Bt29K and API-B genes was constructed. These two insect-resistant genes were transferred into two cotton ( Gossypium hirsutum L.) varieties ( or lines) via Agrobacterium-mediated transformation and nine homozygous transgenic cotton lines showing a mortality of 90.0% - 99.7% to cotton ballworm (Heliothis armigera) larvae and good agronomic traits were selected through six generations. Molecular biology analysis revealed that one or two copies of the insecticidal protein genes were integrated into the transgenic cotton genome and activated Cry1Ac and API-B protein expression was at a level of 0.17% and 0.09% of the total soluble protein in the transgenic cotton leaves, respectively. Comparison of the insect-resistance of the homozygous lines expressing the activated chimeric Cry1Ac and API-B with that expressing Cry1Ac only revealed that the insect-resistance of the former is apparently higher than the latter. These results also indicate that the strategy to construct a plant expression vector expressing two different insect-resistant genes reported here is reasonable.展开更多
In order to investigate the possibility and efficiency of exogenous gene spread in nature and potential ecological risk of transgenic rice, as well as analyze the effect of exogenous Bt gene insertion on ecological fi...In order to investigate the possibility and efficiency of exogenous gene spread in nature and potential ecological risk of transgenic rice, as well as analyze the effect of exogenous Bt gene insertion on ecological fitness of transgenic rice plants, a experiment was carried out with three insect-resistant Bt transgenic rice cultivars Bt63, R1 and R2 and one conventional rice line 11-838 as experimental materials, the insect-resistant transgenic and non-transgenic rice plants were inter- cropped pair-wisely under high and low insect-infestation pressures, and the vegeta- tive growth, seed-setting and the resistance to rice stem borers were compared be- tween transgenic and non-transgenic lines. According to the experimental results, both the tiller number and fresh weight of Bt transgenic rice plants under low insect- infestation pressure showed no significant differences compared with the control, but the plant height, spike length and spike weight were all lower than those of non- transgenic rice plant, and Bt63 and R2 were significantly different compared with the control. On the contrary, under high insect-infestation pressure, the tiller number, spike length and spike weight of three Bt transgenic rice cultivars were significantly higher than those of the control, while the plant height showed different fitness ef- fects among various transgenic rice cultivars, which might be related to the charac- teristics of the receptive cultivars. The individual filled grain number and 1 000-grain weight of three transgenic rice cultivars showed no significant difference compared with the control under two different insect-infestation pressures, suggesting that the effect of exogenous Bt gene on seed setting was not significant. Under insect-infes- tation pressure, the resistance of three Bt transgenic rice cultivars against rice stem borer was significantly superior to non-transgenic rice, indicating that the effect of exogenous Bt gene on insect resistance of receptive plants was distinctly. Further- more, experimental results showed that the fitness cost of Bt transgenic rice was rel- atively low, which implied that exogenous Bt gene in insect-resistant transgenic rice might escape under certain environmental conditions, but this risk was very low.展开更多
A cDNA library was constructed with 1.5×10~6 pfu from rice immature seeds,fromwhich a cDNA clone for rice thiol proteinase inhibitor,oryzacystatin(OC),was isolated byscreening with synthesized oligodeoxynucleotid...A cDNA library was constructed with 1.5×10~6 pfu from rice immature seeds,fromwhich a cDNA clone for rice thiol proteinase inhibitor,oryzacystatin(OC),was isolated byscreening with synthesized oligodeoxynucleotide probe,which contained a 309bp open read-ing frame,84bp 5′-end noncoding region and a poly(A)signal AATAAA at the 3′-end fol-lowed by 31Nt poly(A).Then the coding region of OC was amplified and inserted into thedownstream of λP_RP_L promoter for thermal-inducible expression in E.coli.Shifting the cul-ture temperature from 30℃ to 42℃ led to a high level expression of OC,which exhibited adistinct band of 12.0 kDa and accounted for at least 10% of the total soluble proteins fromSDS-PAGE.The papain-inhibitory activity of the expressed OC was further confirmed.展开更多
Genetic and expressional stability of Bt toxin gene is crucial for the breeding of insect-resistant transgenic cotton varieties and their commercialization. Genomic Southern blot analysis of R3, R4 and R5 generations ...Genetic and expressional stability of Bt toxin gene is crucial for the breeding of insect-resistant transgenic cotton varieties and their commercialization. Genomic Southern blot analysis of R3, R4 and R5 generations of bivalent transgenic insect-resistant cotton plants was done in order to determine the integration, the copy number and the inheritance stability of Bt toxin gene in the transgenic cotton plants. The results indicated that there was a 4.7 kb positive band in the Southern blot when the genomic DNA of the bivalent transgenic insect-resistant cotton plants and the positive control (the plasmid) were digested with HindⅢ respectively. This result proved that the Bt toxin gene had been integrated into the genome of the cotton in full length. There is only one XhoⅠ restriction site in the Bt toxin gene. Southern blot analysis indicated that many copies of Bt toxin gene had been integrated into the genome of the cotton when the genomic DNA of transgenic plants was digested with XhoⅠ. Among them, there were four copies (about 17.7, 8, 5.5 and 4.7 kb in size) existing in all the tested plants of R3, R4 and R5 generations. The preliminary conclusion was that there were more than four copies of Bt toxin gene integrated into the genome of the cotton, among them, more than one copy can express and inherit steadily. This result provides a scientific basis for the breeding of the bivalent insect-resis- tant transgenic cotton plants and its commercialization.展开更多
根据锤头状核酶的作用模式,设计、合成并克隆了特异性切割马铃薯卷叶病毒(Potato leaf roll virus,PLRV)中国分离株(PLRV-Ch)复制酶基因负链RNA的二价核酶序列。将该核酶基因克隆到pGEM-4Z中,构建成体外转录载体pGEM-4ZDR;同时将包含核...根据锤头状核酶的作用模式,设计、合成并克隆了特异性切割马铃薯卷叶病毒(Potato leaf roll virus,PLRV)中国分离株(PLRV-Ch)复制酶基因负链RNA的二价核酶序列。将该核酶基因克隆到pGEM-4Z中,构建成体外转录载体pGEM-4ZDR;同时将包含核酶切割识别位点的PLRV-Ch复制酶基因cDNA近5'端的874 bp片段反向插入到pGEM-4Z中,构建了体外转录载体pGEM-4ZR5。以线性化的重组质粒pGEM-4ZDR和pGEM-4ZR5为模板,在T7 RNA聚合酶的作用下,分别转录获得核酶RNA和PLRV-Ch复制酶基因5'端负链RNA底物片段。将以上2种RNA转录物混合并经37℃保温后,检测结果表明,所得核酶RNA对PLRV-Ch复制酶基因负链RNA在体外具有较强的特异切割活性。展开更多
Insecticidal protein gene CryIA(c)from Bacillus thuringiensis HD-1(B.t.toxin gene)with 5’-end modified and 3’-end deleted to 4 different lengths were inserted downstream of 35S promoterwith double enhancer and"...Insecticidal protein gene CryIA(c)from Bacillus thuringiensis HD-1(B.t.toxin gene)with 5’-end modified and 3’-end deleted to 4 different lengths were inserted downstream of 35S promoterwith double enhancer and"Ω’"fragment of TMV-RNA cDNA in the binary vector pBin438 to constructthe chimeric expression vector of B.t.toxin gene.Leave stripes of tobacco plant var.NC89 widelygrown in China were transformed with A.tumefaciens LBA4404 harbouring the above expression vectorsrespectively,and kanamycin resistant tobacco plants were regenerated.Insect test with tobacco budwormH.assulta showed that insect-resistant transform.ants could be obtained from the regenerated plantstransformed with B.t.genes of different lengths though highest percentage(~50%)of plants with ahigh morality(90%-100%)to the testing insects is among those transformed with 1.8-kb toxin gene.Genetic,molecular and biological analyses of T1 and T2 progenies of plants with high efficient insect re-sistance showed that B.t.toxin gene and the character of insect resistance have been inherited in the pro-genies.Insect-resistant homozygotes D8-14 and D19-8 have been selected for small-scale field tests.展开更多
Total RNA was extracted from rice immature seeds harvested 2 weeks after flowering; then mRNA was purified. cDNA with NotI and SaiI cohesive ends was synthesized and inserted into λgt22A. After packaged in vitno, the...Total RNA was extracted from rice immature seeds harvested 2 weeks after flowering; then mRNA was purified. cDNA with NotI and SaiI cohesive ends was synthesized and inserted into λgt22A. After packaged in vitno, the cDNA library was constructed with 1.5×106pfu. A 21-mer oligodeoxynucleotide was synthesized according to the 5’-end conserved coding sequence of oryzacystatin (a thiol proteinase inhibitor) and labeled as a probe. From 2.1 × 104 pfu, 9 positive dones have been isolated, 8 of which contain the entire coding region of oryzacystatin. λOC1 has the longest cDNA insert, which contains an open reading frame of 309 bp coding sequence, 84 bp 5’-end non-coding region and a poly(A) signal AATAAA at the 3’-end followed by 31 Nt of poly(A). The coding sequence is the same compared with oryzacystatin genomic DNA sequence, while there are some obvious differences such as insertion and variation in the non-coding region, especially lots of nonsucoessive insertion in the 3’ region after poly(A) signal.展开更多
基金ThePresidentialFoundationofTheChineseAcademyofSciences NaturalScienceFoundationofHebeiProvince China
文摘Partially modified Bt Cry1Ac gene and the arrowhead proteinase inhibitor (API) gene were used to construct a plant transformation vector pBtiA and this construct was transferred into the genome of the hybrid poplar 741 [ Populus alba L.×( P. davidiana Dode+ P. simonii Carr.)× P. tomentosa Carr.] by Agrobacterium _ mediated transformation. Ten kanamycin resistant plants have been regenerated. Upon insect bioassay using Clostera anachoreta (Fabricius), three of the examined plants were demonstrated to be highly resistant to the testing insects. The mortality of insect larvae on one plant was higher than 90% in 6 days after infestation and the growth of the survival larvae were seriously inhibited. Results of PCR and Southern blot analysis indicated that both Bt Cry1Ac gene and API gene were integrated as a single copy into the genomes of these three plants when Cry1Ac gene fragment was used as the probe. Protein dot blot immunoassay and ELISA analysis revealed that at least the Cry1Ac protein was produced in these three transgenic plants and the expression levels were estimated to be approximately 0.015% of the leaf total soluble protein. This is the first report on insect resistant transgenic hybrid poplar 741 that expresses two insecticidal protein genes.
基金Supported by Project of Common Safety Assessment Technology for Genetically Modified Organisms of the Ministry of Agriculture of PRC(2011ZX08011-006)Project of Protection and Utilization of Agricultural Biological Resources"Intrusion Detection of Alien Species"~~
文摘[Objective] This study aimed to investigate the frequency of exogenous gene flow to non-transgenic conventional rice cultivars and assess the potential risks of marker-free of insect-resistant transgenic rice to agricultural ecological environment. [Method] Insect-resistant transgenic rice variety HUAHUI No.1 was planted as the experimental material and surrounded by several non-transgenic conventional rice cultivars. F1 non-transgenic rice seeds were collected according to different distances and identified by using PCR technology, the frequency of exogenous gene flow from insect-resistant transgenic rice to non-transgenic conventional rice cultivars was counted and analyzed. [Result] The average frequency of exogenous Bt gene flow to P13381 and CHUNJIANG063 was 0. Transgene flow occurred to varying degrees from insect-resistant transgenic rice HUAHUI No.1 to several non-transgenic rice lines including HEX122-2, TIANXlANG, MINGHUI63 and Pl157, with the maximum average gene flow frequency of 0.875%. The frequency of gene flow was gradually reduced with the increase of distance, and the average transgene flow frequency de- creased to 0 in all the sampling points 7 m away from transgenic rice material. [Conclusion] This study revealed that the exogenous gene flow frequency of insect-re- sistant transgenic rice variety HUAHUI No.1 was very low, leading to very small risk to the eco-environment. Rational distribution in the field for physical isolation, keeping the appropriate distance and scientific farming arrangement to avoid the synchronization of flowering can effectively control the exogenous gene flow from transgenic rice and reduce he ecological risks caused by transgene escape.
基金Supported by Strategic Leading Science and Technology Project of Chinese Academy of Sciences(XDA28130504)Special Project of Agricultural Science and Technology Innovation Leaping Project of Heilongjiang Academy of Agricultural Sciences(HNK2019CX14)Scientific Research Fund Project of Heilongjiang Provincial Scientific Research Institutes(CZKYF2021C008)。
文摘In order to promote the research of transgenic insect-resistant maize,the target gene were transferred into maize material Hi-Ⅱ by Agrobacterium-mediated genetic transformation of maize embryos,and maize plants with CryNGc insect-resistant genes were cultured by explant infection,co-culture and differentiation screening to study the genetic expression and resistance of exogenous genes in the offspring.The results showed that the infection effect was the best when the size of young maize embryo was 1.2-1.8 mm.Ten positive transformed plants with CryNGc insect-resistant genes were successfully obtained,and the transformation efficiency was 1.428‰.
文摘A chimeric gene, Bt29K, composed of coding sequences of activated Cry1Ac insecticidal protein and an endoplasm reticulum-retarding signal peptide, was synthesized. A plant expression vector containing two expression cassettes for the Bt29K and API-B genes was constructed. These two insect-resistant genes were transferred into two cotton ( Gossypium hirsutum L.) varieties ( or lines) via Agrobacterium-mediated transformation and nine homozygous transgenic cotton lines showing a mortality of 90.0% - 99.7% to cotton ballworm (Heliothis armigera) larvae and good agronomic traits were selected through six generations. Molecular biology analysis revealed that one or two copies of the insecticidal protein genes were integrated into the transgenic cotton genome and activated Cry1Ac and API-B protein expression was at a level of 0.17% and 0.09% of the total soluble protein in the transgenic cotton leaves, respectively. Comparison of the insect-resistance of the homozygous lines expressing the activated chimeric Cry1Ac and API-B with that expressing Cry1Ac only revealed that the insect-resistance of the former is apparently higher than the latter. These results also indicate that the strategy to construct a plant expression vector expressing two different insect-resistant genes reported here is reasonable.
基金Supported by the Spring Sunshine Plan of PRC Ministry of Education for Scholars Studied in France,office of Guizhou Science and Technology [(2011)3021]~~
文摘In order to investigate the possibility and efficiency of exogenous gene spread in nature and potential ecological risk of transgenic rice, as well as analyze the effect of exogenous Bt gene insertion on ecological fitness of transgenic rice plants, a experiment was carried out with three insect-resistant Bt transgenic rice cultivars Bt63, R1 and R2 and one conventional rice line 11-838 as experimental materials, the insect-resistant transgenic and non-transgenic rice plants were inter- cropped pair-wisely under high and low insect-infestation pressures, and the vegeta- tive growth, seed-setting and the resistance to rice stem borers were compared be- tween transgenic and non-transgenic lines. According to the experimental results, both the tiller number and fresh weight of Bt transgenic rice plants under low insect- infestation pressure showed no significant differences compared with the control, but the plant height, spike length and spike weight were all lower than those of non- transgenic rice plant, and Bt63 and R2 were significantly different compared with the control. On the contrary, under high insect-infestation pressure, the tiller number, spike length and spike weight of three Bt transgenic rice cultivars were significantly higher than those of the control, while the plant height showed different fitness ef- fects among various transgenic rice cultivars, which might be related to the charac- teristics of the receptive cultivars. The individual filled grain number and 1 000-grain weight of three transgenic rice cultivars showed no significant difference compared with the control under two different insect-infestation pressures, suggesting that the effect of exogenous Bt gene on seed setting was not significant. Under insect-infes- tation pressure, the resistance of three Bt transgenic rice cultivars against rice stem borer was significantly superior to non-transgenic rice, indicating that the effect of exogenous Bt gene on insect resistance of receptive plants was distinctly. Further- more, experimental results showed that the fitness cost of Bt transgenic rice was rel- atively low, which implied that exogenous Bt gene in insect-resistant transgenic rice might escape under certain environmental conditions, but this risk was very low.
基金Supported by Prime Minister FouNdationthe High Techriology Research and Development Programme of ChinaRockefeller Foun-dation.
文摘A cDNA library was constructed with 1.5×10~6 pfu from rice immature seeds,fromwhich a cDNA clone for rice thiol proteinase inhibitor,oryzacystatin(OC),was isolated byscreening with synthesized oligodeoxynucleotide probe,which contained a 309bp open read-ing frame,84bp 5′-end noncoding region and a poly(A)signal AATAAA at the 3′-end fol-lowed by 31Nt poly(A).Then the coding region of OC was amplified and inserted into thedownstream of λP_RP_L promoter for thermal-inducible expression in E.coli.Shifting the cul-ture temperature from 30℃ to 42℃ led to a high level expression of OC,which exhibited adistinct band of 12.0 kDa and accounted for at least 10% of the total soluble proteins fromSDS-PAGE.The papain-inhibitory activity of the expressed OC was further confirmed.
基金supported by the National"863"High-Tech Program,the Special Foundation of the Ministry of Agriculture for"Developing Cotton Production"and the Chinese Foundation for Agriculture Science and Education.
文摘Genetic and expressional stability of Bt toxin gene is crucial for the breeding of insect-resistant transgenic cotton varieties and their commercialization. Genomic Southern blot analysis of R3, R4 and R5 generations of bivalent transgenic insect-resistant cotton plants was done in order to determine the integration, the copy number and the inheritance stability of Bt toxin gene in the transgenic cotton plants. The results indicated that there was a 4.7 kb positive band in the Southern blot when the genomic DNA of the bivalent transgenic insect-resistant cotton plants and the positive control (the plasmid) were digested with HindⅢ respectively. This result proved that the Bt toxin gene had been integrated into the genome of the cotton in full length. There is only one XhoⅠ restriction site in the Bt toxin gene. Southern blot analysis indicated that many copies of Bt toxin gene had been integrated into the genome of the cotton when the genomic DNA of transgenic plants was digested with XhoⅠ. Among them, there were four copies (about 17.7, 8, 5.5 and 4.7 kb in size) existing in all the tested plants of R3, R4 and R5 generations. The preliminary conclusion was that there were more than four copies of Bt toxin gene integrated into the genome of the cotton, among them, more than one copy can express and inherit steadily. This result provides a scientific basis for the breeding of the bivalent insect-resis- tant transgenic cotton plants and its commercialization.
基金the Key Programme of the 7th Five-Year Plan,State Planning Commission of ChinaInternational Centre of Science and Culture (ICSC),World Laboratory,Lausanne,Switzerland
文摘Insecticidal protein gene CryIA(c)from Bacillus thuringiensis HD-1(B.t.toxin gene)with 5’-end modified and 3’-end deleted to 4 different lengths were inserted downstream of 35S promoterwith double enhancer and"Ω’"fragment of TMV-RNA cDNA in the binary vector pBin438 to constructthe chimeric expression vector of B.t.toxin gene.Leave stripes of tobacco plant var.NC89 widelygrown in China were transformed with A.tumefaciens LBA4404 harbouring the above expression vectorsrespectively,and kanamycin resistant tobacco plants were regenerated.Insect test with tobacco budwormH.assulta showed that insect-resistant transform.ants could be obtained from the regenerated plantstransformed with B.t.genes of different lengths though highest percentage(~50%)of plants with ahigh morality(90%-100%)to the testing insects is among those transformed with 1.8-kb toxin gene.Genetic,molecular and biological analyses of T1 and T2 progenies of plants with high efficient insect re-sistance showed that B.t.toxin gene and the character of insect resistance have been inherited in the pro-genies.Insect-resistant homozygotes D8-14 and D19-8 have been selected for small-scale field tests.
基金Project supported by Prime Minister Foundation,863 Program Foundation and Rockefeller Foundation.
文摘Total RNA was extracted from rice immature seeds harvested 2 weeks after flowering; then mRNA was purified. cDNA with NotI and SaiI cohesive ends was synthesized and inserted into λgt22A. After packaged in vitno, the cDNA library was constructed with 1.5×106pfu. A 21-mer oligodeoxynucleotide was synthesized according to the 5’-end conserved coding sequence of oryzacystatin (a thiol proteinase inhibitor) and labeled as a probe. From 2.1 × 104 pfu, 9 positive dones have been isolated, 8 of which contain the entire coding region of oryzacystatin. λOC1 has the longest cDNA insert, which contains an open reading frame of 309 bp coding sequence, 84 bp 5’-end non-coding region and a poly(A) signal AATAAA at the 3’-end followed by 31 Nt of poly(A). The coding sequence is the same compared with oryzacystatin genomic DNA sequence, while there are some obvious differences such as insertion and variation in the non-coding region, especially lots of nonsucoessive insertion in the 3’ region after poly(A) signal.