For analyzing correlated binary data with high-dimensional covariates,we,in this paper,propose a two-stage shrinkage approach.First,we construct a weighted least-squares(WLS) type function using a special weighting sc...For analyzing correlated binary data with high-dimensional covariates,we,in this paper,propose a two-stage shrinkage approach.First,we construct a weighted least-squares(WLS) type function using a special weighting scheme on the non-conservative vector field of the generalized estimating equations(GEE) model.Second,we define a penalized WLS in the spirit of the adaptive LASSO for simultaneous variable selection and parameter estimation.The proposed procedure enjoys the oracle properties in high-dimensional framework where the number of parameters grows to infinity with the number of clusters.Moreover,we prove the consistency of the sandwich formula of the covariance matrix even when the working correlation matrix is misspecified.For the selection of tuning parameter,we develop a consistent penalized quadratic form(PQF) function criterion.The performance of the proposed method is assessed through a comparison with the existing methods and through an application to a crossover trial in a pain relief study.展开更多
The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some sp...The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some spurious covariates in the linear part, a penalized profile least squares estimation is suggested with the assistance from smoothly clipped absolute deviation penalty. However, the estimator is often biased due to the existence of measurement errors, a bias correction is proposed such that the estimation consistency with the oracle property is proved. Second, based on the estimator, a test statistic is constructed to check a linear hypothesis of the parameters and its asymptotic properties are studied. We prove that the existence of measurement errors causes intractability of the limiting null distribution that requires a Monte Carlo approximation and the absence of the errors can lead to a chi-square limit. Furthermore, confidence regions of the parameter of interest can also be constructed. Simulation studies and a real data example are conducted to examine the performance of our estimators and test statistic.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11201306)the Innovation Program of Shanghai Municipal Education Commission(Grant No.13YZ065)+2 种基金the Fundamental Research Project of Shanghai Normal University(Grant No.SK201207)the scholarship under the State Scholarship Fund by the China Scholarship Council in 2011the Research Grant Council of Hong Kong, Hong Kong,China(Grant No.#HKBU2028/10P)
文摘For analyzing correlated binary data with high-dimensional covariates,we,in this paper,propose a two-stage shrinkage approach.First,we construct a weighted least-squares(WLS) type function using a special weighting scheme on the non-conservative vector field of the generalized estimating equations(GEE) model.Second,we define a penalized WLS in the spirit of the adaptive LASSO for simultaneous variable selection and parameter estimation.The proposed procedure enjoys the oracle properties in high-dimensional framework where the number of parameters grows to infinity with the number of clusters.Moreover,we prove the consistency of the sandwich formula of the covariance matrix even when the working correlation matrix is misspecified.For the selection of tuning parameter,we develop a consistent penalized quadratic form(PQF) function criterion.The performance of the proposed method is assessed through a comparison with the existing methods and through an application to a crossover trial in a pain relief study.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401006, 11671299 and 11671042)a grant from the University Grants Council of Hong Kong+1 种基金the China Postdoctoral Science Foundation (Grant No. 2017M611083)the National Statistical Science Research Program of China (Grant No. 2015LY55)
文摘The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some spurious covariates in the linear part, a penalized profile least squares estimation is suggested with the assistance from smoothly clipped absolute deviation penalty. However, the estimator is often biased due to the existence of measurement errors, a bias correction is proposed such that the estimation consistency with the oracle property is proved. Second, based on the estimator, a test statistic is constructed to check a linear hypothesis of the parameters and its asymptotic properties are studied. We prove that the existence of measurement errors causes intractability of the limiting null distribution that requires a Monte Carlo approximation and the absence of the errors can lead to a chi-square limit. Furthermore, confidence regions of the parameter of interest can also be constructed. Simulation studies and a real data example are conducted to examine the performance of our estimators and test statistic.