We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of ric...We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of richness, diversity and density of understory vegetation of logged sites. A factorial experiment was conducted in the mixed conifer forest of Gidakom in Western Bhutan. Levels of the logging treatment included small(0.15 – 0.24 ha), medium(0.25 – 0.35 ha) and large(0.36 – 1.31 ha) gaps. The grazing treatment included grazed(primarily by cattle) and ungrazed(where herbivores were excluded by a fence) plots nested within each gap. Data were collected from 12 gaps(4 replicates at each level of logging) using the point intercept method. Shannon Weaver Diversity and Margalef's indices were used to estimate species diversity and describe species richness, respectively. Soil samples were analyzed for pH and nutrients. The interaction effect of logging and grazing was significant(p≤0.001) only on species diversity. Relative to ungrazed areas, species diversity was significantly higher(0.01≤p≤0.05) in medium grazed gaps. Under grazed conditions, soil P was negatively correlated with gap size and species diversity. While species diversity was positivelycorrelated(0.01≤p≤0.05) with soil N in grazed plots species richness was positively correlated(0.001≤p≤0.01) with soil N in ungrazed plots. Relative density of Yushania microphylla and Carex nubigena were higher under ungrazed conditions. Our study suggests that the combined effect of cattle grazing and logging results in higher species diversity of understory vegetation in medium and grazed gaps in mixed conifer forests of Bhutan,whereas increase or decrease in relative density of major species is determined primarily by the independent effects of grazing and logging. From management perspective, forest managers must refrain from creating large gaps to avoid loss of nutrients(mainly P and N), which may eventually affect tree regeneration. Managers intending to maintain understory vegetation diversity must consider the combined effects of grazing and logging, ensuring low to moderate grazing pressure.展开更多
Constraints and probable pathway towards increasing tree density and diversity within farmlands as a means of reducing human dependency on Mt. Marsabit forest for wood are addressed. The forest provides a carbon sink ...Constraints and probable pathway towards increasing tree density and diversity within farmlands as a means of reducing human dependency on Mt. Marsabit forest for wood are addressed. The forest provides a carbon sink to counteract the risks and hazards associated with climate change. A structured questionnaire was administered to a sample of 205 respondents that were selected from a population of 3075 farming households using a systematic random sampling procedure. While majority of the farms (53%) had low tree density (1-10 trees), only 8% of the farms had high density (≥ 20 trees). About 50% and 15% farms had Grevelia robusta and Eucalyptus cammudelensis, which were grown for timber production, respectively. Broad leafed trees, like Croton megalocarpus and Moringa stenoptella had been established in 17% of the farmlands, respectively. With only 20% of the households having a fence around the crop fields, coupled by widely inter-household sharing of crop residues for grazing, tree browsing by livestock was a constraint to tree establishment. The challenges present an opportunity to establish governance structures and processes for communal responsibility and management of tree resources in the farms. A plausible approach entails the Adaptive Collaborative Management (ACM) as a process that facilitates to experiential learning and negotiation for probable actions and policies in management of natural resources.展开更多
基金support of the Government of Austria with funds routed through the sterreischer Austauschdienst(OeAD)
文摘We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of richness, diversity and density of understory vegetation of logged sites. A factorial experiment was conducted in the mixed conifer forest of Gidakom in Western Bhutan. Levels of the logging treatment included small(0.15 – 0.24 ha), medium(0.25 – 0.35 ha) and large(0.36 – 1.31 ha) gaps. The grazing treatment included grazed(primarily by cattle) and ungrazed(where herbivores were excluded by a fence) plots nested within each gap. Data were collected from 12 gaps(4 replicates at each level of logging) using the point intercept method. Shannon Weaver Diversity and Margalef's indices were used to estimate species diversity and describe species richness, respectively. Soil samples were analyzed for pH and nutrients. The interaction effect of logging and grazing was significant(p≤0.001) only on species diversity. Relative to ungrazed areas, species diversity was significantly higher(0.01≤p≤0.05) in medium grazed gaps. Under grazed conditions, soil P was negatively correlated with gap size and species diversity. While species diversity was positivelycorrelated(0.01≤p≤0.05) with soil N in grazed plots species richness was positively correlated(0.001≤p≤0.01) with soil N in ungrazed plots. Relative density of Yushania microphylla and Carex nubigena were higher under ungrazed conditions. Our study suggests that the combined effect of cattle grazing and logging results in higher species diversity of understory vegetation in medium and grazed gaps in mixed conifer forests of Bhutan,whereas increase or decrease in relative density of major species is determined primarily by the independent effects of grazing and logging. From management perspective, forest managers must refrain from creating large gaps to avoid loss of nutrients(mainly P and N), which may eventually affect tree regeneration. Managers intending to maintain understory vegetation diversity must consider the combined effects of grazing and logging, ensuring low to moderate grazing pressure.
文摘Constraints and probable pathway towards increasing tree density and diversity within farmlands as a means of reducing human dependency on Mt. Marsabit forest for wood are addressed. The forest provides a carbon sink to counteract the risks and hazards associated with climate change. A structured questionnaire was administered to a sample of 205 respondents that were selected from a population of 3075 farming households using a systematic random sampling procedure. While majority of the farms (53%) had low tree density (1-10 trees), only 8% of the farms had high density (≥ 20 trees). About 50% and 15% farms had Grevelia robusta and Eucalyptus cammudelensis, which were grown for timber production, respectively. Broad leafed trees, like Croton megalocarpus and Moringa stenoptella had been established in 17% of the farmlands, respectively. With only 20% of the households having a fence around the crop fields, coupled by widely inter-household sharing of crop residues for grazing, tree browsing by livestock was a constraint to tree establishment. The challenges present an opportunity to establish governance structures and processes for communal responsibility and management of tree resources in the farms. A plausible approach entails the Adaptive Collaborative Management (ACM) as a process that facilitates to experiential learning and negotiation for probable actions and policies in management of natural resources.