期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Genetic diversity analysis of spawner and recaptured populations of Chinese shrimp(Fenneropenaeus chinensis)during stock enhancement in the Bohai Bay based on an SSR marker 被引量:12
1
作者 WANG Mosang WANG Weiji +5 位作者 XIAO Guangxia LIU Kefeng HU Yulong TIAN Tao KONG Jie JIN Xianshi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第8期51-56,共6页
Eight microsatellite markers were used to analyze genetic diversity, level of inbreeding, and effective population size of spawner and recaptured populations of Chinese shrimp(Fenneropenaeus chinensis) during stock ... Eight microsatellite markers were used to analyze genetic diversity, level of inbreeding, and effective population size of spawner and recaptured populations of Chinese shrimp(Fenneropenaeus chinensis) during stock enhancement in the Bohai Bay in 2013. A total of 254 and 238 alleles were identified in the spawner and recaptured populations, respectively, and the numbers of alleles(N_a) were 8–63 and 6–60, respectively. The numbers of effective alleles(N_e) were 2.52–21.60 and 2.67–20.72, respectively. The polymorphism information content ranged from 0.529 to 0.952. The observed heterozygosity(H_o) values(0.638–0.910 and 0.712–0.927) were lower than the expected heterozygosity(H_e) values(0.603–0.954 and 0.625–0.952), which indicated that the two populations possessed a rich genetic diversity. In 16 tests(2 populations×8 loci), 13 tests deviated from the HardyWeinberg equilibrium. F_(is) values were positive at seven loci and the inbreeding coefficients(F) of the two populations estimated by trio ML were 13.234% and 11.603%, suggesting that there was a relatively high degree of inbreeding. A certain level of inbreeding depression had occurred in the Chinese shrimp population. F_(st) values ranged from 0 to 0.059, with a mean of 0.028, displaying a low level of genetic differentiation in the two populations. Effective population sizes(3 060.2 and 3 842.8) were higher than the minimum number suggested for retaining the evolutionary potential to adapt to new environmental conditions. For enhancement activity in 2014,the ideal number of captured shrimp spawners should have ranged from 7 686 to 19 214 to maintain genetic diversity and effective population size. Further strategies to adjust the balance of economic cost, fishing effort and ideal number of shrimp spawners to maintain a satisfactory effective population size for ensuring the sustainability of Chinese shrimp are proposed. 展开更多
关键词 Fenneropenaeus chinensis SSR genetic diversity inbreeding effective population size
下载PDF
Does hydrological fluctuation alter impacts of species richness on biomass in wetland plant communities? 被引量:5
2
作者 Fang-Li Luo Xing-Xing Jiang +1 位作者 Hong-Li Li Fei-Hai Yu 《Journal of Plant Ecology》 SCIE 2016年第4期434-441,共8页
Aims The diversity-productivity relationship is one of the most critical questions in ecology and can be altered by environmental factors.Hydrological fluctuation affects growth of wetland plants,and such effects vary... Aims The diversity-productivity relationship is one of the most critical questions in ecology and can be altered by environmental factors.Hydrological fluctuation affects growth of wetland plants,and such effects vary with plant species.Therefore,we hypothesized that hydrological fluctuation changes effects of species richness on productivity of wetland plant communities.Methods We constructed wetland plant communities consisting of three or six wetland plant species and subjected them to hydrological fluctuation(i.e.gradually changing water level)of two frequencies and two ranges,with unchanged water level as the control.We measured height,root and shoot dry mass of each plant at harvest.Important Findings Hydrological fluctuation significantly decreased biomass of wetland plant communities,which was due to impacts of fluctuation range,but not those of fluctuation frequency.Community biomass was significantly higher when species richness was higher,and such an effect did not depend on hydrological fluctuation.Therefore,hydrological fluctuation can decrease the productivity of wetland plant communities but may not alter the diversity-productivity relationship. 展开更多
关键词 diversity effects diversity-productivity relationship experimental plant communities flooding fluctuation frequency fluctuation range water depth change
原文传递
Spatial heterogeneity in soil particle size:does it affect the yield of plant communities with different species richness?
3
作者 Wei Xue Lin Huang Fei-Hai Yu 《Journal of Plant Ecology》 SCIE 2016年第5期608-615,共8页
Aims Soil heterogeneity is ubiquitous in many ecosystems.We hypothesized that plant communities with higher species richness might be better adapted to soil heterogeneity and produce more biomass than those with lower... Aims Soil heterogeneity is ubiquitous in many ecosystems.We hypothesized that plant communities with higher species richness might be better adapted to soil heterogeneity and produce more biomass than those with lower richness.This is because there is niche differentiation among species and different species can complement each other and occupy a broader range of niches when plant species richness is high.However,no study has tested how soil particle heterogeneity affects the yield of plant communities,and whether such effects depend on the spatial scale of the heterogeneity and the species richness within the communities.Methods In a greenhouse experiment,we sowed seeds of four-species or eight-species mixtures in three heterogeneous treatments consisting of 32,8 or 2 patches of both small(1.5 mm)and large quartz(3.0 mm)particles arranged in a chessboard manner and one homogeneous treatment with an even mixture of small and large quartz particles.Important Findings Biomass production was significantly greater in the communities with high species richness than those with low species richness.However,soil particle heterogeneity or its interactions with patch scale or species richness did not significantly affect biomass production of the experimental communities.This work indicates that plant species richness may have a bigger impact on plant productivity than soil particle heterogeneity.Further studies should consider multiple sets of plant species during longer time periods to unravel the potential mechanisms of soil heterogeneity and its interactions with the impacts of species richness on community yield and species coexistence. 展开更多
关键词 diversity effect experimental communities environmental heterogeneity patch size soil particle heterogeneity spatial scale
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部