期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
THE PROOF OF FERMAT'S LAST THEOREM
1
作者 汪家訸 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第11期1031-1038,共8页
i) Instead of x ̄n+ y ̄n = z ̄n ,we use as the general equation of Fermat's Last Theorem (FLT),where a and b are two arbitrary natural numbers .By means of binomial expansion ,(0.1) an be written as Because a ̄... i) Instead of x ̄n+ y ̄n = z ̄n ,we use as the general equation of Fermat's Last Theorem (FLT),where a and b are two arbitrary natural numbers .By means of binomial expansion ,(0.1) an be written as Because a ̄r-(-b) ̄r always contains a +b as its factor ,(0.2) can be written as where φ_r =[a ̄r-(-b) ̄r]/ (a+b ) are integers for r=1 . 2, 3. ...n (ii) Lets be a factor of a+b and let (a +b) = se. We can use x= sy to transform (0.3 ) to the following (0.4)(iii ) Dividing (0.4) by s ̄2 we have On the left side of (0.5) there is a polynomial of y with integer coefficient and on the right side there is a constant cφ/s .If cφ/s is not an integer ,then we cannot find an integer y to satisfy (0.5), and then FLT is true for this case. If cφ_n/s is an integer ,we may change a and c such the cφ_n/s≠an integer . 展开更多
关键词 FACTORIZATION COFACTOR relative prime gcd combination.algebraic division. Fermat's Last theorem
下载PDF
Diophantine Quotients and Remainders with Applications to Fermat and Pythagorean Equations
2
作者 Prosper Kouadio Kimou François Emmanuel Tanoé 《American Journal of Computational Mathematics》 2023年第1期199-210,共12页
Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pyth... Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pythagoras’- Fermat’s equation defined as follows.                                                                                         (1) when , it is well known that this equation has an infinity of solutions but has none (non-trivial) when . We also know that the last result, named Fermat-Wiles theorem (or FLT) was obtained at great expense and its understanding remains out of reach even for a good fringe of professional mathematicians. The aim of this research is to set up new simple but effective tools in the treatment of Diophantine equations and that of Pythagoras-Fermat. The tools put forward in this research are the properties of the quotients and the Diophantine remainders which we define as follows. Let a non-trivial triplet () solution of Equation (1) such that . and are called the Diophantine quotients and remainders of solution . We compute the remainder and the quotient of b and c by a using the division algorithm. Hence, we have: and et with . We prove the following important results. if and only if and if and only if . Also, we deduce that or for any hypothetical solution . We illustrate these results by effectively computing the Diophantine quotients and remainders in the case of Pythagorean triplets using a Python program. In the end, we apply the previous properties to directly prove a partial result of FLT. . 展开更多
关键词 Diophantine Equation Modular Arithmetic Fermat-Wiles theorem Pythagorean Triplets division theorem division Algorithm Python Program Diophantine Quotients Diophantine Remainders
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部