With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matchi...With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.展开更多
目的通过对以神经科学集群建设为特色的三级甲等医院的神经专科能力进行评估,为国内医院的特色专科建设提供参考。方法从服务能力、技术能力、质量安全和服务效率4个维度建立神经外科、神经内科专科能力评估指标体系,通过优劣解距离(tec...目的通过对以神经科学集群建设为特色的三级甲等医院的神经专科能力进行评估,为国内医院的特色专科建设提供参考。方法从服务能力、技术能力、质量安全和服务效率4个维度建立神经外科、神经内科专科能力评估指标体系,通过优劣解距离(technique for order preference by similarity to ideal solution,TOPSIS)法纵向比较首都医科大学附属北京天坛医院神经专科2019—2023年发展趋势,并采用波士顿矩阵深入分析神经专科各亚专业建设情况。结果2019—2023年首都医科大学附属北京天坛医院神经专科TOPSIS综合得分指数呈上升趋势。神经外科以胶质瘤诊治为主的肿瘤专业1,在技术能力和质量安全方面得分指数最高;神经内科以脑血管病为主的亚专业,在技术能力和服务效率方面得分指数较高,以上两个亚专业在波士顿矩阵中均处于优势巩固区。结论2019—2023年首都医科大学附属北京天坛医院神经专科诊治能力不断提升。神经外科亚专业中,专科能力排名最高的为肿瘤专业1,诊疗技术难度较高,同时医疗质量负性事件发生率低。神经内科各亚专业中,脑血管专业诊疗技术难度高且服务高效。展开更多
目的采用一测多评(QAMS)法同时测定法制半夏曲中肌苷、鸟苷、腺苷等11种成分含量,并建立其灰色关联度分析(GRA)联合熵权逼近理想解排序分析法(EW-TOPSIS)综合质量评价方法。方法采用Shimadzu C 18色谱柱;乙腈-0.5%醋酸为流动相,梯度洗脱...目的采用一测多评(QAMS)法同时测定法制半夏曲中肌苷、鸟苷、腺苷等11种成分含量,并建立其灰色关联度分析(GRA)联合熵权逼近理想解排序分析法(EW-TOPSIS)综合质量评价方法。方法采用Shimadzu C 18色谱柱;乙腈-0.5%醋酸为流动相,梯度洗脱,流速1.0 mL·min-1;检测波长254和290 nm。以对甲氧基肉桂酸乙酯为内参比物质,计算其他10个成分的相对校正因子(RCF),测定各成分含量。采用GRA联合EW-TOPSIS模型对法制半夏曲进行综合质量评价。结果法制半夏曲中11种成分在一定浓度范围内线性关系良好,相关系数均>0.999;平均加样回收率96.94%~100.12%(RSD<2.0%,n=9);QAMS与外标法(ESM)实测值无明显差异。GRA模型相对关联度0.2903~0.6187,EW-TOPSIS模型相对接近度0.2114~0.6343;GRA和EW-TOPSIS模型综合评价结果基本一致。结论QAMS法便捷、准确,可用于法制半夏曲多指标成分定量控制,GRA联合EW-TOPSIS模型可用于法制半夏曲综合质量评价。展开更多
目前储能技术路线多样,不同类型的储能各具应用前景,但储能选型需要综合考虑经济性、安全性等因素,是一个复杂的多目标决策问题,因此储能选型是工程应用中的关键问题之一。提出一种将层次分析法(analytic hierarchy process,AHP)和优劣...目前储能技术路线多样,不同类型的储能各具应用前景,但储能选型需要综合考虑经济性、安全性等因素,是一个复杂的多目标决策问题,因此储能选型是工程应用中的关键问题之一。提出一种将层次分析法(analytic hierarchy process,AHP)和优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)-模糊综合分析法相结合的储能选型评价体系。首先,通过建立评价体系的判断矩阵,利用AHP获取指标权重;其次,将判断矩阵里量纲不同的指标类型用TOPSIS做规范化处理,以此获得更客观的权重向量,改善AHP法的主观性;而后,将指标权重对角化处理并与标准化后的矩阵相乘获得加权判断矩阵,并求取贴近度向量。最后,加权判断矩阵与模糊综合分析法关系矩阵相乘获取储能类型的隶属度评价结果,并以隶属度最大值所在的等级为最终评价,处于等级Ⅰ中最佳,等级Ⅱ次之并以此类推;由此通过TOPSIS获得更客观的权重向量,改善AHP法的主观性,得到的权重向量也更客观。最后以锂离子电池、钠硫电池和铅酸电池等七种储能类型在应用于削峰填谷、电网保供电和改善电压质量场景为例,并与现有的储能选型方法进行比较,体现该评价体系的创新,检验所提评价体系和选型方法的有效性。展开更多
文摘With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.
文摘目的通过对以神经科学集群建设为特色的三级甲等医院的神经专科能力进行评估,为国内医院的特色专科建设提供参考。方法从服务能力、技术能力、质量安全和服务效率4个维度建立神经外科、神经内科专科能力评估指标体系,通过优劣解距离(technique for order preference by similarity to ideal solution,TOPSIS)法纵向比较首都医科大学附属北京天坛医院神经专科2019—2023年发展趋势,并采用波士顿矩阵深入分析神经专科各亚专业建设情况。结果2019—2023年首都医科大学附属北京天坛医院神经专科TOPSIS综合得分指数呈上升趋势。神经外科以胶质瘤诊治为主的肿瘤专业1,在技术能力和质量安全方面得分指数最高;神经内科以脑血管病为主的亚专业,在技术能力和服务效率方面得分指数较高,以上两个亚专业在波士顿矩阵中均处于优势巩固区。结论2019—2023年首都医科大学附属北京天坛医院神经专科诊治能力不断提升。神经外科亚专业中,专科能力排名最高的为肿瘤专业1,诊疗技术难度较高,同时医疗质量负性事件发生率低。神经内科各亚专业中,脑血管专业诊疗技术难度高且服务高效。
文摘目的采用一测多评(QAMS)法同时测定法制半夏曲中肌苷、鸟苷、腺苷等11种成分含量,并建立其灰色关联度分析(GRA)联合熵权逼近理想解排序分析法(EW-TOPSIS)综合质量评价方法。方法采用Shimadzu C 18色谱柱;乙腈-0.5%醋酸为流动相,梯度洗脱,流速1.0 mL·min-1;检测波长254和290 nm。以对甲氧基肉桂酸乙酯为内参比物质,计算其他10个成分的相对校正因子(RCF),测定各成分含量。采用GRA联合EW-TOPSIS模型对法制半夏曲进行综合质量评价。结果法制半夏曲中11种成分在一定浓度范围内线性关系良好,相关系数均>0.999;平均加样回收率96.94%~100.12%(RSD<2.0%,n=9);QAMS与外标法(ESM)实测值无明显差异。GRA模型相对关联度0.2903~0.6187,EW-TOPSIS模型相对接近度0.2114~0.6343;GRA和EW-TOPSIS模型综合评价结果基本一致。结论QAMS法便捷、准确,可用于法制半夏曲多指标成分定量控制,GRA联合EW-TOPSIS模型可用于法制半夏曲综合质量评价。
文摘目前储能技术路线多样,不同类型的储能各具应用前景,但储能选型需要综合考虑经济性、安全性等因素,是一个复杂的多目标决策问题,因此储能选型是工程应用中的关键问题之一。提出一种将层次分析法(analytic hierarchy process,AHP)和优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)-模糊综合分析法相结合的储能选型评价体系。首先,通过建立评价体系的判断矩阵,利用AHP获取指标权重;其次,将判断矩阵里量纲不同的指标类型用TOPSIS做规范化处理,以此获得更客观的权重向量,改善AHP法的主观性;而后,将指标权重对角化处理并与标准化后的矩阵相乘获得加权判断矩阵,并求取贴近度向量。最后,加权判断矩阵与模糊综合分析法关系矩阵相乘获取储能类型的隶属度评价结果,并以隶属度最大值所在的等级为最终评价,处于等级Ⅰ中最佳,等级Ⅱ次之并以此类推;由此通过TOPSIS获得更客观的权重向量,改善AHP法的主观性,得到的权重向量也更客观。最后以锂离子电池、钠硫电池和铅酸电池等七种储能类型在应用于削峰填谷、电网保供电和改善电压质量场景为例,并与现有的储能选型方法进行比较,体现该评价体系的创新,检验所提评价体系和选型方法的有效性。