The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) io...The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.展开更多
Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic pr...Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic properties,visualizing its magnetic distribution has been a longstanding challenge.In this work,we introduce an innovative method by using a fiber optic diamond probe,a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields.We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50denomination anti-counterfeiting strip.Additionally,we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip.The findings and method presented in this study hold broader significance,extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips.These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited.展开更多
The developme nt of high-level an ti-co un terfeiti ng tech niq ues is of great sig nifica nee in econo mics and security issues.However,i ntricate read ing methods are required to obta in multi-level info rmati on st...The developme nt of high-level an ti-co un terfeiti ng tech niq ues is of great sig nifica nee in econo mics and security issues.However,i ntricate read ing methods are required to obta in multi-level info rmati on stored in differe nt colors,which greatly limits the applicati on of an ti-co un terfeit ing tech no logy on sol ving real world problems.Here in,we realize multicolor information anti-counterfeiting under simply external stimulation by utilizing the functional groups and multiple emission centers of lanthanide metal organic framework(Ln-MOFs)to tune luminescence color.Water responsive multicolor luminescence represented by both the tunable color from red to blue within the visible region and high sensitive responsivity has bee n achieved,owing to the in creased nonr adiative decay pathways and enhan ced Eu3+-to-liga nd en ergy back tra nsfer.Remarkably,i nfo rmatio n hidde n in differe nt colors n eeds to be read with a specific water content,which can be used as an en crypti on key to en sure the security of the info rmati on for high-level an ti-co un terfeiti ng.展开更多
Counterfeiting is one of the most serious problems in the consumer market. One promising approach for anti-counterfeiting is to attach a low-cost Radio-frequency Identification (RFID) tag to the product authentication...Counterfeiting is one of the most serious problems in the consumer market. One promising approach for anti-counterfeiting is to attach a low-cost Radio-frequency Identification (RFID) tag to the product authentication. In this paper, we propose an RFID system for detecting counterfeiting products. This RFID system consists of the tag authentication protocol and the database correction protocol. We use the tag authentication protocol for authenticating tags without revealing their sensitive information. This protocol also allows the customer to freely inquire the tag. To prevent the widespread of the counterfeit products, we use the tag status information along with tag identity information. Meanwhile, the database correction protocol guarantees the correctness of the tag status. Our anti-counterfeiting system is the first work considering the seller who plays an important role in the consumer product supply chain. Finally, we show that anti-counterfeiting system is quite secure against counterfeiting and the tag authentication protocol is lightweight enough to be implemented in RFID-based applications.展开更多
The authenticity identification of anti-counterfeiting codes based on mobile phone platforms is affected by lighting environment,photographing habits,camera resolution and other factors,resulting in poor collection qu...The authenticity identification of anti-counterfeiting codes based on mobile phone platforms is affected by lighting environment,photographing habits,camera resolution and other factors,resulting in poor collection quality of anti-counterfeiting codes and weak differentiation of anti-counterfeiting codes for high-quality counterfeits.Developing an anticounterfeiting code authentication algorithm based on mobile phones is of great commercial value.Although the existing algorithms developed based on special equipment can effectively identify forged anti-counterfeiting codes,the anti-counterfeiting code identification scheme based on mobile phones is still in its infancy.To address the small differences in texture features,low response speed and excessively large deep learning models used in mobile phone anti-counterfeiting and identification scenarios,we propose a feature-guided double pool attention network(FG-DPANet)to solve the reprinting forgery problem of printing anti-counterfeiting codes.To address the slight differences in texture features in high-quality reprinted anti-counterfeiting codes,we propose a feature guidance algorithm that creatively combines the texture features and the inherent noise feature of the scanner and printer introduced in the reprinting process to identify anti-counterfeiting code authenticity.The introduction of noise features effectively makes up for the small texture difference of high-quality anti-counterfeiting codes.The double pool attention network(DPANet)is a lightweight double pool attention residual network.Under the condition of ensuring detection accuracy,DPANet can simplify the network structure as much as possible,improve the network reasoning speed,and run better on mobile devices with low computing power.We conducted a series of experiments to evaluate the FG-DPANet proposed in this paper.Experimental results show that the proposed FG-DPANet can resist highquality and small-size anti-counterfeiting code reprint forgery.By comparing with the existing algorithm based on texture,it is shown that the proposed method has a higher authentication accuracy.Last but not least,the proposed scheme has been evaluated in the anti-counterfeiting code blurring scene,and the results show that our proposed method can well resist slight blurring of anti-counterfeiting images.展开更多
In the information age,electronic documents(e-documents)have become a popular alternative to paper documents due to their lower costs,higher dissemination rates,and ease of knowledge sharing.However,digital copyright ...In the information age,electronic documents(e-documents)have become a popular alternative to paper documents due to their lower costs,higher dissemination rates,and ease of knowledge sharing.However,digital copyright infringements occur frequently due to the ease of copying,which not only infringes on the rights of creators but also weakens their creative enthusiasm.Therefore,it is crucial to establish an e-document sharing system that enforces copyright protection.However,the existing centralized system has outstanding vulnerabilities,and the plagiarism detection algorithm used cannot fully detect the context,semantics,style,and other factors of the text.Digital watermark technology is only used as a means of infringement tracing.This paper proposes a decentralized framework for e-document sharing based on decentralized autonomous organization(DAO)and non-fungible token(NFT)in blockchain.The use of blockchain as a distributed credit base resolves the vulnerabilities inherent in traditional centralized systems.The e-document evaluation and plagiarism detection mechanisms based on the DAO model effectively address challenges in comprehensive text information checks,thereby promoting the enhancement of e-document quality.The mechanism for protecting and circulating e-document copyrights using NFT technology ensures effective safeguarding of users’e-document copyrights and facilitates e-document sharing.Moreover,recognizing the security issues within the DAO governance mechanism,we introduce an innovative optimization solution.Through experimentation,we validate the enhanced security of the optimized governance mechanism,reducing manipulation risks by up to 51%.Additionally,by utilizing evolutionary game analysis to deduce the equilibrium strategies of the framework,we discovered that adjusting the reward and penalty parameters of the incentive mechanism motivates creators to generate superior quality and unique e-documents,while evaluators are more likely to engage in assessments.展开更多
Purpose:Accurately assigning the document type of review articles in citation index databases like Web of Science(WoS)and Scopus is important.This study aims to investigate the document type assignation of review arti...Purpose:Accurately assigning the document type of review articles in citation index databases like Web of Science(WoS)and Scopus is important.This study aims to investigate the document type assignation of review articles in Web of Science,Scopus and Publisher’s websites on a large scale.Design/methodology/approach:27,616 papers from 160 journals from 10 review journal series indexed in SCI are analyzed.The document types of these papers labeled on journals’websites,and assigned by WoS and Scopus are retrieved and compared to determine the assigning accuracy and identify the possible reasons for wrongly assigning.For the document type labeled on the website,we further differentiate them into explicit review and implicit review based on whether the website directly indicates it is a review or not.Findings:Overall,WoS and Scopus performed similarly,with an average precision of about 99% and recall of about 80%.However,there were some differences between WoS and Scopus across different journal series and within the same journal series.The assigning accuracy of WoS and Scopus for implicit reviews dropped significantly,especially for Scopus.Research limitations:The document types we used as the gold standard were based on the journal websites’labeling which were not manually validated one by one.We only studied the labeling performance for review articles published during 2017-2018 in review journals.Whether this conclusion can be extended to review articles published in non-review journals and most current situation is not very clear.Practical implications:This study provides a reference for the accuracy of document type assigning of review articles in WoS and Scopus,and the identified pattern for assigning implicit reviews may be helpful to better labeling on websites,WoS and Scopus.Originality/value:This study investigated the assigning accuracy of document type of reviews and identified the some patterns of wrong assignments.展开更多
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro...The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.展开更多
As digital technologies have advanced more rapidly,the number of paper documents recently converted into a digital format has exponentially increased.To respond to the urgent need to categorize the growing number of d...As digital technologies have advanced more rapidly,the number of paper documents recently converted into a digital format has exponentially increased.To respond to the urgent need to categorize the growing number of digitized documents,the classification of digitized documents in real time has been identified as the primary goal of our study.A paper classification is the first stage in automating document control and efficient knowledge discovery with no or little human involvement.Artificial intelligence methods such as Deep Learning are now combined with segmentation to study and interpret those traits,which were not conceivable ten years ago.Deep learning aids in comprehending input patterns so that object classes may be predicted.The segmentation process divides the input image into separate segments for a more thorough image study.This study proposes a deep learning-enabled framework for automated document classification,which can be implemented in higher education.To further this goal,a dataset was developed that includes seven categories:Diplomas,Personal documents,Journal of Accounting of higher education diplomas,Service letters,Orders,Production orders,and Student orders.Subsequently,a deep learning model based on Conv2D layers is proposed for the document classification process.In the final part of this research,the proposed model is evaluated and compared with other machine-learning techniques.The results demonstrate that the proposed deep learning model shows high results in document categorization overtaking the other machine learning models by reaching 94.84%,94.79%,94.62%,94.43%,94.07%in accuracy,precision,recall,F-score,and AUC-ROC,respectively.The achieved results prove that the proposed deep model is acceptable to use in practice as an assistant to an office worker.展开更多
Research on the use of EHR is contradictory since it presents contradicting results regarding the time spent documenting. There is research that supports the use of electronic records as a tool to speed documentation;...Research on the use of EHR is contradictory since it presents contradicting results regarding the time spent documenting. There is research that supports the use of electronic records as a tool to speed documentation;and research that found that it is time consuming. The purpose of this quantitative retrospective before-after project was to measure the impact of using the laboratory value flowsheet within the EHR on documentation time. The research question was: “Does the use of a laboratory value flowsheet in the EHR impact documentation time by primary care providers (PCPs)?” The theoretical framework utilized in this project was the Donabedian Model. The population in this research was the two PCPs in a small primary care clinic in the northwest of Puerto Rico. The sample was composed of all the encounters during the months of October 2019 and December 2019. The data was obtained through data mining and analyzed using SPSS 27. The evaluative outcome of this project is that there is a decrease in documentation time after implementation of the use of the laboratory value flowsheet in the EHR. However, patients per day increase therefore having an impact on the number of patients seen per day/week/month. The implications for clinical practice include the use of templates to improve workflow and documentation as well as decreasing documentation time while also increasing the number of patients seen per day. .展开更多
Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such...Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM.展开更多
With the widespread use of Chinese globally, the number of Chinese learners has been increasing, leading to various grammatical errors among beginners. Additionally, as domestic efforts to develop industrial informati...With the widespread use of Chinese globally, the number of Chinese learners has been increasing, leading to various grammatical errors among beginners. Additionally, as domestic efforts to develop industrial information grow, electronic documents have also proliferated. When dealing with numerous electronic documents and texts written by Chinese beginners, manually written texts often contain hidden grammatical errors, posing a significant challenge to traditional manual proofreading. Correcting these grammatical errors is crucial to ensure fluency and readability. However, certain special types of text grammar or logical errors can have a huge impact, and manually proofreading a large number of texts individually is clearly impractical. Consequently, research on text error correction techniques has garnered significant attention in recent years. The advent and advancement of deep learning have paved the way for sequence-to-sequence learning methods to be extensively applied to the task of text error correction. This paper presents a comprehensive analysis of Chinese text grammar error correction technology, elaborates on its current research status, discusses existing problems, proposes preliminary solutions, and conducts experiments using judicial documents as an example. The aim is to provide a feasible research approach for Chinese text error correction technology.展开更多
In this paper,the research achievements and progress of Yunnan tea germplasm resource in past sixty years are systematically reviewed from the following aspects:exploration,collecting,conservation,protection,identifi...In this paper,the research achievements and progress of Yunnan tea germplasm resource in past sixty years are systematically reviewed from the following aspects:exploration,collecting,conservation,protection,identification,evaluation and shared utilization.Simultaneously,the current problems and the suggestions about subsequent development of tea germplasm resources in Yunnan were discussed,including superior and rare germplasm collection,tea genetic diversity research,biotechnology utilization in tea germplasm innovation,super gene exploration and function,the construction of utilization platform,biological base of species and population conservation.展开更多
A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and...A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and document feature encoding. In the Rough-CC4, the documents are described by the equivalent classes of the approximate words. By this method, the dimensions representing the documents can be reduced, which can solve the precision problems caused by the different document sizes and also blur the differences caused by the approximate words. In the Rough-CC4, a binary encoding method is introduced, through which the importance of documents relative to each equivalent class is encoded. By this encoding method, the precision of the Rough-CC4 is improved greatly and the space complexity of the Rough-CC4 is reduced. The Rough-CC4 can be used in automatic classification of documents.展开更多
The eXtensible markup language (XML) is a kind of new meta language for replacing HTML and has many advantages. Traditional engineering documents have too many expression forms to be expediently managed and have no dy...The eXtensible markup language (XML) is a kind of new meta language for replacing HTML and has many advantages. Traditional engineering documents have too many expression forms to be expediently managed and have no dynamic correlation functions. This paper introduces a new method and uses XML to store and manage engineering documents to realize the format unity of engineering documents and their dynamic correlations.展开更多
背景:色素沉着绒毛结节性滑膜炎在病因、临床表现、诊断与治疗等研究领域依然存在较大争议,对色素沉着绒毛结节性滑膜炎进行文献计量学及可视化研究可以理清该领域研究发展脉络,为未来的研究指明方向。目的:分析色素沉着绒毛结节性滑膜...背景:色素沉着绒毛结节性滑膜炎在病因、临床表现、诊断与治疗等研究领域依然存在较大争议,对色素沉着绒毛结节性滑膜炎进行文献计量学及可视化研究可以理清该领域研究发展脉络,为未来的研究指明方向。目的:分析色素沉着绒毛结节性滑膜炎全球研究现状、热点及趋势。方法:选用Web of Science及中国知网数据库检索1995-2023年所有与色素沉着绒毛结节性滑膜炎相关的文献出版物,用Citespace和Bibliometrics软件对所有文献进行聚类、共现和突现词分析。Web of Science核心合集数据库采用主题词加自由词进行检索,中国知网数据库通过主题词进行检索。最终纳入986篇英文文献和599篇中文文献。结果与结论:①美国在该领域研究占有绝对领导地位,共发文数量、H指数和被引次数均排名第一。中国总发文量排名第4,H指数排名第12,发文质量与国际合作方面仍有待加强。②中国知网数据库相关研究聚类分析显示排名前5的聚类为放射治疗、软组织肉瘤、类风湿性关节炎、磁共振影像和诊断。③持续突现至2023年的关键词有集落刺激因子1、腱鞘巨细胞瘤、个案报道、染色体易位、放射治疗、表达和激酶。④依据关键词及共被引文献分析发现,关于色素沉着绒毛结节性滑膜炎临床特征的研究、集落刺激因子1抑制剂新药开发,以及集落刺激因子1抑制剂在治疗过程中的应用是目前的研究热点。⑤结合主题演化及现有研究热点分析,未来在明确该病病因、发病机制及临床特征的基础上,提高色素沉着绒毛结节性滑膜炎诊断准确率、增强治疗的精准性、降低治疗后复发率将是需要重点关注的问题。展开更多
BACKGROUND: Acute aortic dissection(AoD) is a hypertensive emergency often requiring the transfer of patients to higher care hospitals; thus, clinical care documentation and compliance with the Emergency Medical Treat...BACKGROUND: Acute aortic dissection(AoD) is a hypertensive emergency often requiring the transfer of patients to higher care hospitals; thus, clinical care documentation and compliance with the Emergency Medical Treatment and Active Labor Act(EMTALA) is crucial. The study assessed emergency providers(EP) documentation of clinical care and EMTALA compliance among interhospital transferred AoD patients.METHODS: This retrospective study examined adult patients transferred directly from a referring emergency department(ED) to a quaternary academic center between January 1, 2011 and September 30, 2015. The primary outcome was the percentage of records with adequate documentation of clinical care(ADoCC). The secondary outcome was the percentage of records with adequate documentation of EMTALA compliance(ADoEMTALA). RESULTS: There were 563 electronically identified patients with 287 included in the final analysis. One hundred and five(36.6%) patients had ADoCC while 166(57.8%) patients had ADoEMTALA. Patients with inadequate documentation of EMTALA(IDoEMTALA) were associated with a higher likelihood of not meeting the American Heart Association(AHA) ED Departure SBP guideline(OR 1.8, 95% CI 1.03–3.2, P=0.04). Male gender, handwritten type of documentation, and transport by air were associated with an increased risk of inadequate documentation of clinical care(IDoCC), while receiving continuous infusion was associated with higher risk of IDoEMTALA.CONCLUSION: Documentation of clinical care and EMTALA compliance by Emergency Providers is poor. Inadequate EMTALA documentation was associated with a higher likelihood of patients not meeting the AHA ED Departure SBP guideline. Therefore, Emergency Providers should thoroughly document clinical care and EMTALA compliance among this critically ill group before transfer.展开更多
基金National Natural Science Foundation of China(11974063)Graduate research innovation project,School of Optoelectronic Engineering,Chongqing University(GDYKC2023002)+1 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-010)The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project no.(IFKSUOR3-073-9).
文摘The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB2012600)the Shanghai Aerospace Science and Technology Innovation Fund,China (Grant No.SAST-2022-102)。
文摘Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic properties,visualizing its magnetic distribution has been a longstanding challenge.In this work,we introduce an innovative method by using a fiber optic diamond probe,a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields.We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50denomination anti-counterfeiting strip.Additionally,we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip.The findings and method presented in this study hold broader significance,extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips.These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited.
基金This work was supported by the National Natural Science Foundation of China(Nos.52025131,51632008,51772268,and 61721005)Zhejiang Provincial Natural Science Foundation of China(No.LD18E020001).
文摘The developme nt of high-level an ti-co un terfeiti ng tech niq ues is of great sig nifica nee in econo mics and security issues.However,i ntricate read ing methods are required to obta in multi-level info rmati on stored in differe nt colors,which greatly limits the applicati on of an ti-co un terfeit ing tech no logy on sol ving real world problems.Here in,we realize multicolor information anti-counterfeiting under simply external stimulation by utilizing the functional groups and multiple emission centers of lanthanide metal organic framework(Ln-MOFs)to tune luminescence color.Water responsive multicolor luminescence represented by both the tunable color from red to blue within the visible region and high sensitive responsivity has bee n achieved,owing to the in creased nonr adiative decay pathways and enhan ced Eu3+-to-liga nd en ergy back tra nsfer.Remarkably,i nfo rmatio n hidde n in differe nt colors n eeds to be read with a specific water content,which can be used as an en crypti on key to en sure the security of the info rmati on for high-level an ti-co un terfeiti ng.
文摘Counterfeiting is one of the most serious problems in the consumer market. One promising approach for anti-counterfeiting is to attach a low-cost Radio-frequency Identification (RFID) tag to the product authentication. In this paper, we propose an RFID system for detecting counterfeiting products. This RFID system consists of the tag authentication protocol and the database correction protocol. We use the tag authentication protocol for authenticating tags without revealing their sensitive information. This protocol also allows the customer to freely inquire the tag. To prevent the widespread of the counterfeit products, we use the tag status information along with tag identity information. Meanwhile, the database correction protocol guarantees the correctness of the tag status. Our anti-counterfeiting system is the first work considering the seller who plays an important role in the consumer product supply chain. Finally, we show that anti-counterfeiting system is quite secure against counterfeiting and the tag authentication protocol is lightweight enough to be implemented in RFID-based applications.
基金This work is supported by Supported by the National Key Research and Development Program of China under Grant No.2020YFF0304902the Science and Technology Research Project of Jiangxi Provincial Department of Education under Grant No.GJJ202511。
文摘The authenticity identification of anti-counterfeiting codes based on mobile phone platforms is affected by lighting environment,photographing habits,camera resolution and other factors,resulting in poor collection quality of anti-counterfeiting codes and weak differentiation of anti-counterfeiting codes for high-quality counterfeits.Developing an anticounterfeiting code authentication algorithm based on mobile phones is of great commercial value.Although the existing algorithms developed based on special equipment can effectively identify forged anti-counterfeiting codes,the anti-counterfeiting code identification scheme based on mobile phones is still in its infancy.To address the small differences in texture features,low response speed and excessively large deep learning models used in mobile phone anti-counterfeiting and identification scenarios,we propose a feature-guided double pool attention network(FG-DPANet)to solve the reprinting forgery problem of printing anti-counterfeiting codes.To address the slight differences in texture features in high-quality reprinted anti-counterfeiting codes,we propose a feature guidance algorithm that creatively combines the texture features and the inherent noise feature of the scanner and printer introduced in the reprinting process to identify anti-counterfeiting code authenticity.The introduction of noise features effectively makes up for the small texture difference of high-quality anti-counterfeiting codes.The double pool attention network(DPANet)is a lightweight double pool attention residual network.Under the condition of ensuring detection accuracy,DPANet can simplify the network structure as much as possible,improve the network reasoning speed,and run better on mobile devices with low computing power.We conducted a series of experiments to evaluate the FG-DPANet proposed in this paper.Experimental results show that the proposed FG-DPANet can resist highquality and small-size anti-counterfeiting code reprint forgery.By comparing with the existing algorithm based on texture,it is shown that the proposed method has a higher authentication accuracy.Last but not least,the proposed scheme has been evaluated in the anti-counterfeiting code blurring scene,and the results show that our proposed method can well resist slight blurring of anti-counterfeiting images.
基金This work is supported by the National Key Research and Development Program(2022YFB2702300)National Natural Science Foundation of China(Grant No.62172115)+2 种基金Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education under Grant Number No.1331005Guangdong Higher Education Innovation Group 2020KCXTD007Guangzhou Fundamental Research Plan of Municipal-School Jointly Funded Projects(No.202102010445).
文摘In the information age,electronic documents(e-documents)have become a popular alternative to paper documents due to their lower costs,higher dissemination rates,and ease of knowledge sharing.However,digital copyright infringements occur frequently due to the ease of copying,which not only infringes on the rights of creators but also weakens their creative enthusiasm.Therefore,it is crucial to establish an e-document sharing system that enforces copyright protection.However,the existing centralized system has outstanding vulnerabilities,and the plagiarism detection algorithm used cannot fully detect the context,semantics,style,and other factors of the text.Digital watermark technology is only used as a means of infringement tracing.This paper proposes a decentralized framework for e-document sharing based on decentralized autonomous organization(DAO)and non-fungible token(NFT)in blockchain.The use of blockchain as a distributed credit base resolves the vulnerabilities inherent in traditional centralized systems.The e-document evaluation and plagiarism detection mechanisms based on the DAO model effectively address challenges in comprehensive text information checks,thereby promoting the enhancement of e-document quality.The mechanism for protecting and circulating e-document copyrights using NFT technology ensures effective safeguarding of users’e-document copyrights and facilitates e-document sharing.Moreover,recognizing the security issues within the DAO governance mechanism,we introduce an innovative optimization solution.Through experimentation,we validate the enhanced security of the optimized governance mechanism,reducing manipulation risks by up to 51%.Additionally,by utilizing evolutionary game analysis to deduce the equilibrium strategies of the framework,we discovered that adjusting the reward and penalty parameters of the incentive mechanism motivates creators to generate superior quality and unique e-documents,while evaluators are more likely to engage in assessments.
文摘Purpose:Accurately assigning the document type of review articles in citation index databases like Web of Science(WoS)and Scopus is important.This study aims to investigate the document type assignation of review articles in Web of Science,Scopus and Publisher’s websites on a large scale.Design/methodology/approach:27,616 papers from 160 journals from 10 review journal series indexed in SCI are analyzed.The document types of these papers labeled on journals’websites,and assigned by WoS and Scopus are retrieved and compared to determine the assigning accuracy and identify the possible reasons for wrongly assigning.For the document type labeled on the website,we further differentiate them into explicit review and implicit review based on whether the website directly indicates it is a review or not.Findings:Overall,WoS and Scopus performed similarly,with an average precision of about 99% and recall of about 80%.However,there were some differences between WoS and Scopus across different journal series and within the same journal series.The assigning accuracy of WoS and Scopus for implicit reviews dropped significantly,especially for Scopus.Research limitations:The document types we used as the gold standard were based on the journal websites’labeling which were not manually validated one by one.We only studied the labeling performance for review articles published during 2017-2018 in review journals.Whether this conclusion can be extended to review articles published in non-review journals and most current situation is not very clear.Practical implications:This study provides a reference for the accuracy of document type assigning of review articles in WoS and Scopus,and the identified pattern for assigning implicit reviews may be helpful to better labeling on websites,WoS and Scopus.Originality/value:This study investigated the assigning accuracy of document type of reviews and identified the some patterns of wrong assignments.
文摘The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.
文摘As digital technologies have advanced more rapidly,the number of paper documents recently converted into a digital format has exponentially increased.To respond to the urgent need to categorize the growing number of digitized documents,the classification of digitized documents in real time has been identified as the primary goal of our study.A paper classification is the first stage in automating document control and efficient knowledge discovery with no or little human involvement.Artificial intelligence methods such as Deep Learning are now combined with segmentation to study and interpret those traits,which were not conceivable ten years ago.Deep learning aids in comprehending input patterns so that object classes may be predicted.The segmentation process divides the input image into separate segments for a more thorough image study.This study proposes a deep learning-enabled framework for automated document classification,which can be implemented in higher education.To further this goal,a dataset was developed that includes seven categories:Diplomas,Personal documents,Journal of Accounting of higher education diplomas,Service letters,Orders,Production orders,and Student orders.Subsequently,a deep learning model based on Conv2D layers is proposed for the document classification process.In the final part of this research,the proposed model is evaluated and compared with other machine-learning techniques.The results demonstrate that the proposed deep learning model shows high results in document categorization overtaking the other machine learning models by reaching 94.84%,94.79%,94.62%,94.43%,94.07%in accuracy,precision,recall,F-score,and AUC-ROC,respectively.The achieved results prove that the proposed deep model is acceptable to use in practice as an assistant to an office worker.
文摘Research on the use of EHR is contradictory since it presents contradicting results regarding the time spent documenting. There is research that supports the use of electronic records as a tool to speed documentation;and research that found that it is time consuming. The purpose of this quantitative retrospective before-after project was to measure the impact of using the laboratory value flowsheet within the EHR on documentation time. The research question was: “Does the use of a laboratory value flowsheet in the EHR impact documentation time by primary care providers (PCPs)?” The theoretical framework utilized in this project was the Donabedian Model. The population in this research was the two PCPs in a small primary care clinic in the northwest of Puerto Rico. The sample was composed of all the encounters during the months of October 2019 and December 2019. The data was obtained through data mining and analyzed using SPSS 27. The evaluative outcome of this project is that there is a decrease in documentation time after implementation of the use of the laboratory value flowsheet in the EHR. However, patients per day increase therefore having an impact on the number of patients seen per day/week/month. The implications for clinical practice include the use of templates to improve workflow and documentation as well as decreasing documentation time while also increasing the number of patients seen per day. .
文摘Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM.
文摘With the widespread use of Chinese globally, the number of Chinese learners has been increasing, leading to various grammatical errors among beginners. Additionally, as domestic efforts to develop industrial information grow, electronic documents have also proliferated. When dealing with numerous electronic documents and texts written by Chinese beginners, manually written texts often contain hidden grammatical errors, posing a significant challenge to traditional manual proofreading. Correcting these grammatical errors is crucial to ensure fluency and readability. However, certain special types of text grammar or logical errors can have a huge impact, and manually proofreading a large number of texts individually is clearly impractical. Consequently, research on text error correction techniques has garnered significant attention in recent years. The advent and advancement of deep learning have paved the way for sequence-to-sequence learning methods to be extensively applied to the task of text error correction. This paper presents a comprehensive analysis of Chinese text grammar error correction technology, elaborates on its current research status, discusses existing problems, proposes preliminary solutions, and conducts experiments using judicial documents as an example. The aim is to provide a feasible research approach for Chinese text error correction technology.
基金Supported by Project of National Natural Science Foundation of China (31160175)Project of Tea Research Institute of Yunnan Academy of Agricultural Sciences (2009A0937)National Modern Agriculture Technology System Projects in Tea Industry (nycytx-23)~~
文摘In this paper,the research achievements and progress of Yunnan tea germplasm resource in past sixty years are systematically reviewed from the following aspects:exploration,collecting,conservation,protection,identification,evaluation and shared utilization.Simultaneously,the current problems and the suggestions about subsequent development of tea germplasm resources in Yunnan were discussed,including superior and rare germplasm collection,tea genetic diversity research,biotechnology utilization in tea germplasm innovation,super gene exploration and function,the construction of utilization platform,biological base of species and population conservation.
基金The National Natural Science Foundation of China(No.60503020,60373066,60403016,60425206),the Natural Science Foundation of Jiangsu Higher Education Institutions ( No.04KJB520096),the Doctoral Foundation of Nanjing University of Posts and Telecommunication (No.0302).
文摘A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and document feature encoding. In the Rough-CC4, the documents are described by the equivalent classes of the approximate words. By this method, the dimensions representing the documents can be reduced, which can solve the precision problems caused by the different document sizes and also blur the differences caused by the approximate words. In the Rough-CC4, a binary encoding method is introduced, through which the importance of documents relative to each equivalent class is encoded. By this encoding method, the precision of the Rough-CC4 is improved greatly and the space complexity of the Rough-CC4 is reduced. The Rough-CC4 can be used in automatic classification of documents.
文摘The eXtensible markup language (XML) is a kind of new meta language for replacing HTML and has many advantages. Traditional engineering documents have too many expression forms to be expediently managed and have no dynamic correlation functions. This paper introduces a new method and uses XML to store and manage engineering documents to realize the format unity of engineering documents and their dynamic correlations.
文摘背景:色素沉着绒毛结节性滑膜炎在病因、临床表现、诊断与治疗等研究领域依然存在较大争议,对色素沉着绒毛结节性滑膜炎进行文献计量学及可视化研究可以理清该领域研究发展脉络,为未来的研究指明方向。目的:分析色素沉着绒毛结节性滑膜炎全球研究现状、热点及趋势。方法:选用Web of Science及中国知网数据库检索1995-2023年所有与色素沉着绒毛结节性滑膜炎相关的文献出版物,用Citespace和Bibliometrics软件对所有文献进行聚类、共现和突现词分析。Web of Science核心合集数据库采用主题词加自由词进行检索,中国知网数据库通过主题词进行检索。最终纳入986篇英文文献和599篇中文文献。结果与结论:①美国在该领域研究占有绝对领导地位,共发文数量、H指数和被引次数均排名第一。中国总发文量排名第4,H指数排名第12,发文质量与国际合作方面仍有待加强。②中国知网数据库相关研究聚类分析显示排名前5的聚类为放射治疗、软组织肉瘤、类风湿性关节炎、磁共振影像和诊断。③持续突现至2023年的关键词有集落刺激因子1、腱鞘巨细胞瘤、个案报道、染色体易位、放射治疗、表达和激酶。④依据关键词及共被引文献分析发现,关于色素沉着绒毛结节性滑膜炎临床特征的研究、集落刺激因子1抑制剂新药开发,以及集落刺激因子1抑制剂在治疗过程中的应用是目前的研究热点。⑤结合主题演化及现有研究热点分析,未来在明确该病病因、发病机制及临床特征的基础上,提高色素沉着绒毛结节性滑膜炎诊断准确率、增强治疗的精准性、降低治疗后复发率将是需要重点关注的问题。
文摘BACKGROUND: Acute aortic dissection(AoD) is a hypertensive emergency often requiring the transfer of patients to higher care hospitals; thus, clinical care documentation and compliance with the Emergency Medical Treatment and Active Labor Act(EMTALA) is crucial. The study assessed emergency providers(EP) documentation of clinical care and EMTALA compliance among interhospital transferred AoD patients.METHODS: This retrospective study examined adult patients transferred directly from a referring emergency department(ED) to a quaternary academic center between January 1, 2011 and September 30, 2015. The primary outcome was the percentage of records with adequate documentation of clinical care(ADoCC). The secondary outcome was the percentage of records with adequate documentation of EMTALA compliance(ADoEMTALA). RESULTS: There were 563 electronically identified patients with 287 included in the final analysis. One hundred and five(36.6%) patients had ADoCC while 166(57.8%) patients had ADoEMTALA. Patients with inadequate documentation of EMTALA(IDoEMTALA) were associated with a higher likelihood of not meeting the American Heart Association(AHA) ED Departure SBP guideline(OR 1.8, 95% CI 1.03–3.2, P=0.04). Male gender, handwritten type of documentation, and transport by air were associated with an increased risk of inadequate documentation of clinical care(IDoCC), while receiving continuous infusion was associated with higher risk of IDoEMTALA.CONCLUSION: Documentation of clinical care and EMTALA compliance by Emergency Providers is poor. Inadequate EMTALA documentation was associated with a higher likelihood of patients not meeting the AHA ED Departure SBP guideline. Therefore, Emergency Providers should thoroughly document clinical care and EMTALA compliance among this critically ill group before transfer.