期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Document Clustering Based on Constructing Density Tree
1
作者 戴维迪 王文俊 +2 位作者 侯越先 王英 张璐 《Transactions of Tianjin University》 EI CAS 2008年第1期21-26,共6页
This paper focuses on document clustering by clustering algorithm based on a DEnsityTree (CABDET) to improve the accuracy of clustering. The CABDET method constructs a density-based treestructure for every potential c... This paper focuses on document clustering by clustering algorithm based on a DEnsityTree (CABDET) to improve the accuracy of clustering. The CABDET method constructs a density-based treestructure for every potential cluster by dynamically adjusting the radius of neighborhood according to local density. It avoids density-based spatial clustering of applications with noise (DBSCAN) ′s global density parameters and reduces input parameters to one. The results of experiment on real document show that CABDET achieves better accuracy of clustering than DBSCAN method. The CABDET algorithm obtains the max F-measure value 0.347 with the root node's radius of neighborhood 0.80, which is higher than 0.332 of DBSCAN with the radius of neighborhood 0.65 and the minimum number of objects 6. 展开更多
关键词 document handling clustering tree structure vector space model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部