Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns f...Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns for the world. Dolochar is such a solid waste generated by the sponge iron industry. Investigations were carried out on the physical, mineralogical, and chemical characteristics for the efficient utilization of dolochar. The detailed studies on physico-chemical properties and petrography were carded out by optical microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Characterization studies revealed that the dolochar consists of quartz (free as well as locked), free lime, Fe particles, and Ca or Mg and/or Ca+Mg+Fe oxide phases. The washability data of-300 ~m dolochar samples indicated that clean coal with 41wt% ash at 18% yield can be produced from dolochar with 78wt% ash. The studies further suggested that the liberation of the dolochar is hard to achieve for clear separation. The dolochar is observed to have high ash fusion temperature and the un- burned carbon can be best utilized for power generation.展开更多
The present investigation examines the viability of dolochar, a sponge iron industry waste material, as a reductant in the reduction roasting of iron ore slimes, which are another waste generated by iron ore beneficia...The present investigation examines the viability of dolochar, a sponge iron industry waste material, as a reductant in the reduction roasting of iron ore slimes, which are another waste generated by iron ore beneficiation plants. Under statistically determined optimum conditions, which include a temperature of 900°C, a reductant-to-feed mass ratio of 0.35, and a reduction time of 30–45 min, the roasted mass, after being subjected to low-intensity magnetic separation, yielded an iron ore concentrate of approximately 64 wt% Fe at a mass recovery of approximately 71% from the feed iron ore slime assaying 56.2 wt% Fe. X-ray diffraction analyses indicated that the magnetic products contain magnetite and hematite as the major phases, whereas the nonmagnetic fractions contain quartz and hematite.展开更多
基金the Odisha State Pollution Control Board,Bhubaneswar,India
文摘Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns for the world. Dolochar is such a solid waste generated by the sponge iron industry. Investigations were carried out on the physical, mineralogical, and chemical characteristics for the efficient utilization of dolochar. The detailed studies on physico-chemical properties and petrography were carded out by optical microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Characterization studies revealed that the dolochar consists of quartz (free as well as locked), free lime, Fe particles, and Ca or Mg and/or Ca+Mg+Fe oxide phases. The washability data of-300 ~m dolochar samples indicated that clean coal with 41wt% ash at 18% yield can be produced from dolochar with 78wt% ash. The studies further suggested that the liberation of the dolochar is hard to achieve for clear separation. The dolochar is observed to have high ash fusion temperature and the un- burned carbon can be best utilized for power generation.
文摘The present investigation examines the viability of dolochar, a sponge iron industry waste material, as a reductant in the reduction roasting of iron ore slimes, which are another waste generated by iron ore beneficiation plants. Under statistically determined optimum conditions, which include a temperature of 900°C, a reductant-to-feed mass ratio of 0.35, and a reduction time of 30–45 min, the roasted mass, after being subjected to low-intensity magnetic separation, yielded an iron ore concentrate of approximately 64 wt% Fe at a mass recovery of approximately 71% from the feed iron ore slime assaying 56.2 wt% Fe. X-ray diffraction analyses indicated that the magnetic products contain magnetite and hematite as the major phases, whereas the nonmagnetic fractions contain quartz and hematite.