In this paper an efficient compressed domain moving object segmentation algorithm is proposed, in which the motion vector (MV) field parsed from the compressed video is the only cue used for moving object segmentati...In this paper an efficient compressed domain moving object segmentation algorithm is proposed, in which the motion vector (MV) field parsed from the compressed video is the only cue used for moving object segmentation. First the MV field is temporally and spatially normalized, and then accumulated by an iterative backward projection to enhance salient motions and alleviate noisy MVs. The accumulated MV field is then segmented into motion-homogenous regions using a modified statistical region growing approach. Finally, moving object regions are extracted in turn based on minimization of the joint prediction error using the estimated motion models of two region sets containing the candidate object region and other remaining regions, respectively. Experimental results on several H.264 compressed video sequences demonstrate good segmentation performance.展开更多
Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investig...Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investigate the hydrodynamic responses of three barges moored side-by-side in a floatover operation in the frequency and time domains. In the frequency domain, the damping lid method is adopted to improve the overestimated hydrodynamic coefficients calculated from conventional potential flow theory. A time-domain computing program based on potential flow theory and impulse theory is compiled for analyses that consider multibody hydrodynamic interactions and mechanical effects from lines and fenders. Correspondingly, an experiment is carried out for comparison with the numerical results. All statistics, time series, and power density spectra from decay and irregular wave tests are in a fairly good agreement.展开更多
The relation between domain wall motion and intensity of driven current is examined in a phenomenological theory where the kinetic energy is expanded as a series of polynomial function of current density just as the L...The relation between domain wall motion and intensity of driven current is examined in a phenomenological theory where the kinetic energy is expanded as a series of polynomial function of current density just as the Landau phase transition theory. The dependency of velocity on current density is square root which degenerates into linear if the current is much higher than the critical value. The theory result is consistent with several previous experiments and also can explain the change of critical current in the presence of temperature. The role of temperature playing in the dynamics of domain wall motion is also discussed. The phase transition theory in terms of current density is employed to explain the critical behavior of domain wall motion.展开更多
In this paper, we study the likelihood of chaos appearance during domain wall motion induced by electronic transfer. Considering a time-varying current density theory, we proceed to a numerical investigation of the dy...In this paper, we study the likelihood of chaos appearance during domain wall motion induced by electronic transfer. Considering a time-varying current density theory, we proceed to a numerical investigation of the dynamics. Using the dissipation parameter, amplitude and frequency of current density as control parameters;we show how periodic regime as well as chaotic regime can be exhibited in nanomagnetic systems. Numerical results allow setting up the periodicity and quasi-periodicity of system and chaotic phenomena occurring during magnetization switching process in nanomagnet through electronic transfer.展开更多
A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surfa...A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.展开更多
Strong hydrodynamic interactions during the side-by-side offloading operation between floating liquefied natural gas(FLNG) and liquefied natural gas carrier(LNGC) can induce high risks of collision. The weather vane e...Strong hydrodynamic interactions during the side-by-side offloading operation between floating liquefied natural gas(FLNG) and liquefied natural gas carrier(LNGC) can induce high risks of collision. The weather vane effect of a single-point mooring system normally results in the satisfactory hydrodynamic performance of the side-by-side configuration in head seas. Nevertheless, the changes in wave directions in real sea conditions can significantly influence the relative motions. This article studies the relative motions of the side-by-side system by using the theoretical analysis method and the numerical calculation method. Based on the three-dimensional potential theory modified by artificial damping-lid method, the frequency-domain hydrodynamic coefficients can be improved to calculate the retardation functions for the multi-body problem. An in-house code is then developed to perform the time-domain simulation of two vessels, through which the relative motions are subsequently obtained. A range of oblique waves are chosen for the extensive calculation of relative motions between the two vessels, which are further analyzed in terms of the phase shift of motion responses induced by specific resonant wave patterns. Investigation results show that wave directions have a significant influence on the relative sway, roll, and yaw motions. Under the circumstance that the absolute phase shift between the roll motions of two vessels approaches 180°, stronger relative motions are induced when LNGC is on the weather side.Moreover, the gap water resonances at high frequencies tend to cause the dangerous opposed oscillation of two vessels in the sway and yaw modes, whereas FLNG reduces the gap water resonances and relative motions when located on the weather side.展开更多
Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a sim...Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a simple but efficient scenario for multiple domains injection in magnetic nanowires.The domain-chains(DCs),a cluster of multiple domains,can be dynamically generated with tunable static properties.It is found that the number of domains in a single DC can be dynamically adjusted by varying the frequency of microwave field(MF)and the period of spin-polarized current(SPC)intensity.The static properties of the DCs,i.e.,its length,spacing,and period between neighboring DCs,can be dynamically controlled by regulating the frequency of MF and the intensity of SPC.We have also discussed the possibility of using domain-chains as information carries,which provides a meaningful approach for flexible multi-bit information storage applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.60572127), the Development Foundation of Shanghai Municipal Commission of Education (Grant No.05AZ43), and the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘In this paper an efficient compressed domain moving object segmentation algorithm is proposed, in which the motion vector (MV) field parsed from the compressed video is the only cue used for moving object segmentation. First the MV field is temporally and spatially normalized, and then accumulated by an iterative backward projection to enhance salient motions and alleviate noisy MVs. The accumulated MV field is then segmented into motion-homogenous regions using a modified statistical region growing approach. Finally, moving object regions are extracted in turn based on minimization of the joint prediction error using the estimated motion models of two region sets containing the candidate object region and other remaining regions, respectively. Experimental results on several H.264 compressed video sequences demonstrate good segmentation performance.
基金financially supported by Lloyd’s Register Foundation(LRF),a UK-registered charity and sole shareholder of Lloyd’s Register Group Ltd.the Youth Innovation Fund of State Key Laboratory of Ocean Engineering(Grant No.GKZD010059-21)
文摘Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investigate the hydrodynamic responses of three barges moored side-by-side in a floatover operation in the frequency and time domains. In the frequency domain, the damping lid method is adopted to improve the overestimated hydrodynamic coefficients calculated from conventional potential flow theory. A time-domain computing program based on potential flow theory and impulse theory is compiled for analyses that consider multibody hydrodynamic interactions and mechanical effects from lines and fenders. Correspondingly, an experiment is carried out for comparison with the numerical results. All statistics, time series, and power density spectra from decay and irregular wave tests are in a fairly good agreement.
文摘The relation between domain wall motion and intensity of driven current is examined in a phenomenological theory where the kinetic energy is expanded as a series of polynomial function of current density just as the Landau phase transition theory. The dependency of velocity on current density is square root which degenerates into linear if the current is much higher than the critical value. The theory result is consistent with several previous experiments and also can explain the change of critical current in the presence of temperature. The role of temperature playing in the dynamics of domain wall motion is also discussed. The phase transition theory in terms of current density is employed to explain the critical behavior of domain wall motion.
文摘In this paper, we study the likelihood of chaos appearance during domain wall motion induced by electronic transfer. Considering a time-varying current density theory, we proceed to a numerical investigation of the dynamics. Using the dissipation parameter, amplitude and frequency of current density as control parameters;we show how periodic regime as well as chaotic regime can be exhibited in nanomagnetic systems. Numerical results allow setting up the periodicity and quasi-periodicity of system and chaotic phenomena occurring during magnetization switching process in nanomagnet through electronic transfer.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046203)
文摘A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.
基金supported by the China National Scientific and Technology Major Project(2016ZX05028-002-004)
文摘Strong hydrodynamic interactions during the side-by-side offloading operation between floating liquefied natural gas(FLNG) and liquefied natural gas carrier(LNGC) can induce high risks of collision. The weather vane effect of a single-point mooring system normally results in the satisfactory hydrodynamic performance of the side-by-side configuration in head seas. Nevertheless, the changes in wave directions in real sea conditions can significantly influence the relative motions. This article studies the relative motions of the side-by-side system by using the theoretical analysis method and the numerical calculation method. Based on the three-dimensional potential theory modified by artificial damping-lid method, the frequency-domain hydrodynamic coefficients can be improved to calculate the retardation functions for the multi-body problem. An in-house code is then developed to perform the time-domain simulation of two vessels, through which the relative motions are subsequently obtained. A range of oblique waves are chosen for the extensive calculation of relative motions between the two vessels, which are further analyzed in terms of the phase shift of motion responses induced by specific resonant wave patterns. Investigation results show that wave directions have a significant influence on the relative sway, roll, and yaw motions. Under the circumstance that the absolute phase shift between the roll motions of two vessels approaches 180°, stronger relative motions are induced when LNGC is on the weather side.Moreover, the gap water resonances at high frequencies tend to cause the dangerous opposed oscillation of two vessels in the sway and yaw modes, whereas FLNG reduces the gap water resonances and relative motions when located on the weather side.
基金Project supported by the National Natural Science Foundation of China(Grant No.11704191)the Jiangsu Specially-Appointed Professor,the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20171026)the Six-Talent Peaks Project in Jiangsu Province,China(Grant No.XYDXX-038)
文摘Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a simple but efficient scenario for multiple domains injection in magnetic nanowires.The domain-chains(DCs),a cluster of multiple domains,can be dynamically generated with tunable static properties.It is found that the number of domains in a single DC can be dynamically adjusted by varying the frequency of microwave field(MF)and the period of spin-polarized current(SPC)intensity.The static properties of the DCs,i.e.,its length,spacing,and period between neighboring DCs,can be dynamically controlled by regulating the frequency of MF and the intensity of SPC.We have also discussed the possibility of using domain-chains as information carries,which provides a meaningful approach for flexible multi-bit information storage applications.