With the increasing of data size and model size,deep neural networks(DNNs)show outstanding performance in many artificial intelligence(AI)applications.But the big model size makes it a challenge for high-performance a...With the increasing of data size and model size,deep neural networks(DNNs)show outstanding performance in many artificial intelligence(AI)applications.But the big model size makes it a challenge for high-performance and low-power running DNN on processors,such as central processing unit(CPU),graphics processing unit(GPU),and tensor processing unit(TPU).This paper proposes a LOGNN data representation of 8 bits and a hardware and software co-design deep neural network accelerator LACC to meet the challenge.LOGNN data representation replaces multiply operations to add and shift operations in running DNN.LACC accelerator achieves higher efficiency than the state-of-the-art DNN accelerators by domain specific arithmetic computing units.Finally,LACC speeds up the performance per watt by 1.5 times,compared to the state-of-the-art DNN accelerators on average.展开更多
基金Supported by the National Key Research and Development Program of China(No.2018AAA0103300,2017YFA0700900,2017YFA0700902,2017YFA0700901,2019AAA0103802,2020AAA0103802)。
文摘With the increasing of data size and model size,deep neural networks(DNNs)show outstanding performance in many artificial intelligence(AI)applications.But the big model size makes it a challenge for high-performance and low-power running DNN on processors,such as central processing unit(CPU),graphics processing unit(GPU),and tensor processing unit(TPU).This paper proposes a LOGNN data representation of 8 bits and a hardware and software co-design deep neural network accelerator LACC to meet the challenge.LOGNN data representation replaces multiply operations to add and shift operations in running DNN.LACC accelerator achieves higher efficiency than the state-of-the-art DNN accelerators by domain specific arithmetic computing units.Finally,LACC speeds up the performance per watt by 1.5 times,compared to the state-of-the-art DNN accelerators on average.