Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jar...Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa,the Dominican Republic.The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand(BOD5)and chemical oxygen demand,but not for the removal of phosphorus and fecal coliforms.In addition,a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions.The concentrations of heavy metals,such as zinc,copper,chromium,and iron,were found to decrease in the effluent of the wetland,and the concentrations for nickel and manganese tended to increase.The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards.The construction cost of these facilities was around 200 USD per population equivalent,similar to the cost in other countries in the same region.This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen,use of endemic plants that bioaccumulate heavy metals,combination of constructed wetlands with filtration on activated carbon,and inclusion of water purification processes that allow to evaluate the reuse of treated water.展开更多
The combination method of intermittent influent and vertical flow wetlands (VFW) was used in the test to treat the domestic wastewater. Four artificial wetlands including Typha latifolia wetland,Phragmites australis...The combination method of intermittent influent and vertical flow wetlands (VFW) was used in the test to treat the domestic wastewater. Four artificial wetlands including Typha latifolia wetland,Phragmites australis (P.H.) wetland,polyculture wetlands (Typha latifolia and Phragmites australis) and non-vegetation wetland were established in the test. The effects of hydraulic retention time (HRT) and plant species on pollutants removal efficiencies were studied. The results showed that when HRT=7,the treatment efficiencies of wetlands with plants for the removal of TN and NH+4-N were up to 99.65% and 99.58%,respectively. For the control wetland,TN removal efficiency was up to 87.9% when HRT were 6 days,and NH+4-N removal efficiency was up to 91.8% when HRT were 5 days. TP removal efficiencies of four wetlands were higher than 93% when HRT was 6 days. Through the studies on different plants,it was found that vegetation wetlands had better nitrogen removal efficiency than non-vegetation wetland. The treatment efficacy of Phragmites australis wetland and polyculture wetland was better than Typha latifolia wetland.展开更多
In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Vi...In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Village of Xiqing District into 3 groups: compostable materials, recyclable materials and toxics on the basis of the constructed secondary classification mode of domestic waste. The study focused on waste generation strength and classification features, compared the waste generation features between rural and urban residents, and analyzed the re- lation between waste generation strength and economic and cultural factors. The re- sults indicated that the average generation speed of urban domestic waste was 423.08 g/(d.capita), and that of rural domestic waste was 629.89 g/(d.capita), there was significant difference between rural and urban compost generation strength (P= 0.00002), while the generation strength of recyclable materials and toxics between rural and urban areas had no significant difference (P=0.471 and P=0.099, respec- tively). Secondary classification mode is an effective source classification mode for domestic wastes and has positive effects on waste reduction and treatment.展开更多
Experiments on treatment of domestic wastewater by membrane bioreactors were carried out.The results showed that this process could produce good quality effluent with low COD,turbidity and total count of bacteria.With...Experiments on treatment of domestic wastewater by membrane bioreactors were carried out.The results showed that this process could produce good quality effluent with low COD,turbidity and total count of bacteria.With intermittent operation and continuous aeration,the membrane flux was kept steady.The mechanisms of removing COD through membrane,the structure of membrane and filtration resistance were also discussed.展开更多
By combining with the actual situation in the rural area,the practical technology of domestic wastewater treatment which had the wide popularization value was developed in the rural area of Taihu Basin.Moreover,the mu...By combining with the actual situation in the rural area,the practical technology of domestic wastewater treatment which had the wide popularization value was developed in the rural area of Taihu Basin.Moreover,the multi-soil-layering system was used to treat the concentrated rural domestic wastewater,and the demonstration project was established in Fenshui Village,Yixing,Jiangsu.The result showed that the infrastructure and operating cost of system was low,and the treatment effect was good.The average removal ratios of COD,NH+4-N,TN,TP and SS were respectively 70%,83%,59%,76% and 94%.The quality of yielding water could reach Grade A standard of Pollutant Emission Standards in Urban Wastewater Treatment Plant.展开更多
The production of N2O during nitrogen removal from real domestic wastewater was investigated in a lab-scale aerobic-anoxic sequencing batch reactor with a working volume of 14 L. The results showed that the total N2O-...The production of N2O during nitrogen removal from real domestic wastewater was investigated in a lab-scale aerobic-anoxic sequencing batch reactor with a working volume of 14 L. The results showed that the total N2O-N production reached higher than 1.87 mg/L, and up to 4% of removed nitrogen was converted into N20. In addition, N20 led to a much higher greenhouse effect than CO2 during aerobic reaction phase, this proved that N2O production could not be neglected. The N2O-N production during nitrification was 1.85mg/L, whereas, during denitrification, no N2O was produced, nitrification was the main source of N2O production during nitrogen removal. Furthermore, during denitrification, the dissolved N2O at the end of aeration was found to be further reduced to N2. Denitrification thus had the potential of controlling N2O production.展开更多
With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang T...With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang Town in Loess Plateau region as example,the source,amount and harms of rural domestic waste were analyzed firstly,as well as the current situation and existing problems of treatment,and then a suitable waste disposal technology for the town was chosen,finally the reasonable treatment methods combining new countryside and non-new countryside with township was summed up,so as to realize the reduction,harmless and resource treatment of rural domestic waste.展开更多
Domestic wastewater was treated by combined anaerobic biofilm aerobic membrane bioreactor(MBR) process, and part biomass in MBR was withdrawn to treat with ozone, then the ozonated sludge was returned to anaerobic in...Domestic wastewater was treated by combined anaerobic biofilm aerobic membrane bioreactor(MBR) process, and part biomass in MBR was withdrawn to treat with ozone, then the ozonated sludge was returned to anaerobic inlet. In aerobic MBR, MLSS and DO were controlled at 3000—3500 mg/L and 0 8 mg/L respectively. Comparing the experimental results of two stages, it was noticed that ozonation did not affect the removal efficiency for organics but had a significant influence on the removals of NH 3 N and TN. During the ozonation period of two months, no excess sludge was wasted, and a zero sludge yield was obtained.展开更多
In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results sh...In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.展开更多
The objective of this paper was to examine the feasibility of partial nitrification from raw domestic wastewater at ambient temperature by aeration control only. Airflow rate was selected as the sole operational param...The objective of this paper was to examine the feasibility of partial nitrification from raw domestic wastewater at ambient temperature by aeration control only. Airflow rate was selected as the sole operational parameter. A 14L sequencing batch reactor was operated at 23℃ for 8 months, with an input of domestic wastewater. There was a prolgrammed decrease of the airflow rate to 28L·h^-1, the corresponding average dissolved oxygen (DO) was 0.32mg·h^-1, and the average nitrite accumulation rate increased to 92.4% in 3 weeks. Subsequently, further increase in the airflow rate to 48L·h^-1 did not destroy the partial nitrification to nitrite, with average DO of 0.60mg·h^-1 and nitrite accumulating rate of 95.6%. The results showed that limited airflow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate and that this system showed relatively stability at higher airflow rate independent of pH and temperature. About 50% of influent total nitrogen was eliminated coupling with partial nitrification, taking the advantage of low DO during the reaction.展开更多
With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable meth...With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time (HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter (AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91 ℃ ; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for NH4-N, 19% to 23% for NO3-N, and 12% to 22% for TE In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for NH4-N, 30% to 34% for NO3-N, and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling.展开更多
Domestic waste incineration slag(WIS)includes fly ash and slag.Fly ash is classified as hazardous waste because it contains heavy metals.Most of slag are directly stacked or landfilled due to problems such as large ou...Domestic waste incineration slag(WIS)includes fly ash and slag.Fly ash is classified as hazardous waste because it contains heavy metals.Most of slag are directly stacked or landfilled due to problems such as large output and low utilization rate.Harmless treatment is imminent.If WIS is used effectively in the road engineering,which can realize the high-quality and high-efficiency recycling of WIS,and it is of great significance to save resources and protect the environment.This study applies a geopolymer prepared from WIS fly ash as a stabilizing agent in WIS blending macadam for use as a pavement base mixture,and reports the mechanical properties(unconfined compressive strength,splitting strength,and resilience modulus)of the geopolymer-stabilized WIS blending macadam(GeoWIS).The leaching concentrations of harmful heavy metals of GeoWIS soaked in water were also investigated.Finally,the strength formation and heavy metal stability mechanisms were explored.The unconfined compressive strength,splitting strength,and compressive resilient modulus of GeoWIS all increased with increasing geopolymer content and decreasing WIS content.The strength of GeoWIS was derived from its geopolymerization and hydration products(C-S-H gel,N-A-S-H gel,and AFt).When the geopolymer content reached 12%–14%,the GeoWIS without natural macadam met the strength criterion of the asphalt pavement base.Through physical adsorption and chemical bonding,the geopolymer significantly reduced the leaching of harmful heavy metals.In GeoWIS with 50%WIS and stabilized with 10%geopolymer,the Cr,Ni,Cd,and Pb concentrations met the grade III groundwater standard.Concentrations of heavy metals leached from GeoWIS are low and exert little impact on environment.展开更多
According to the characteristics of oil containing wastewater, four strains of microorganism, named TA-11, TA-17, HA-9, HD-1, were picked out from the oil contaminated soil and activated sludge of biochemical treatmen...According to the characteristics of oil containing wastewater, four strains of microorganism, named TA-11, TA-17, HA-9, HD-1, were picked out from the oil contaminated soil and activated sludge of biochemical treatment system of an asphalt plant wastewater in Panjin. They can degrade oil and CODCr in oil containing wastewater. The research result showed that each strain of microorganisms can remove oil and CODCr in oil containing wastewater effectively when the pH value was 7.0, the temperature was 30 degree Celsius, the rotation speed was 140r/min and the inoculation amount was 10%. Especially the highest removal ratio of CODCr was 68% after growth of 64 hours. The removal ratio of CODCr in oil containing wastewater of mixed bacilli was much higher than that of unitary bacilli, and mixing a certain amount of domestic sewage with the oil containing wastewater will also improve the removal rate of CODCr.展开更多
Wastewater treatment is a problem with much acuity in the city of Maradi in general, and particularly in the Communal District I of Maradi. It is for this reason that the present study was conducted which deals with w...Wastewater treatment is a problem with much acuity in the city of Maradi in general, and particularly in the Communal District I of Maradi. It is for this reason that the present study was conducted which deals with wastewater sanitation. The main objective of this study conducted through a survey is to investigate in the domestic wastewater sanitation in the Communal District I of Maradi city. Specifically, the study aims to estimate the amount of wastewater produced by households and to analyze the sanitation system at household and at district levels. The wastewater management practices in this district were assessed through a descriptive cross sectional study in which a total of 129 households were selected by sample distribution technique in the district neighborhoods and studied using interviewer and administered questionnaires at communal and household levels. The results of the study showed that the amount of domestic wastewater generated is quite large, about 32.27 m3 per person per day, and this comes from several sources including showers, laundry, dishwashing and income generating activities. The results also revealed that the unhealthy state of the Communal District I of Maradi is related to the absence of a wastewater treatment system, the methods and practices used in its management, and the population is also largely responsible for this unhealthy state and not willing to participate to a sanitation project.展开更多
Uncontrolled urbanization of African cities and the lack of municipal waste management services in these cities make landscapes become places of multiple and varied interactions between health and environment. In this...Uncontrolled urbanization of African cities and the lack of municipal waste management services in these cities make landscapes become places of multiple and varied interactions between health and environment. In this sense, under strong urban growth in a context of sub-equipment sanitation, the city of Maradi doesn’t escape to this situation which results in the spread of pollution (release of unpleasant odors, and proliferation of mosquitoes) and many diseases posing multiple health problems. Our study focuses only on liquid waste especially domestic wastewater. To study the different domestic wastewater management options in the town of Maradi, a survey was conducted among 340 households in 17 districts. We note in most cases a crucial of waste management infrastructure (drainage and wastewater treatment) in the city. Thus, only the individual sanitation facilities are used. In the town of Maradi, in addition to the storm drains, there are, in old districts, ditches that discharge wastewater and unfortunately end up in rivers without treatment. Total domestic wastewater production is estimated at 86761.28 m3 per day. This water is mostly from laundry activities, bathing, dishes, and is discharged in large part through the streets, by more than 60% of households. Also, pit emptying is performed at 39.11% by the vehicle Peugeot tank. The quality of service rendered by an actor is very important to encourage households to join. Existing autonomous sanitation facilities are poorly designed and poorly maintained. Fecal sludge is dumped in a hole near saturated latrines;this work is mainly done by manual scavengers or dumped in fields or on nearby vacant land concessions.展开更多
The combination of hydrolytic acidification and biological aerated filter (BAF) filled with mussel shells was used to treat domestic wastewater, and the removal rates of chemical oxygen demand (COD), ammonia nitro...The combination of hydrolytic acidification and biological aerated filter (BAF) filled with mussel shells was used to treat domestic wastewater, and the removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) by the system were analyzed under different TP concentrations. When TP concentration ranged from 12.39 to 14.69 mg/L, the removal rate of COD was the best, over 90.92% ; as TP concentration varied from 2.26 to 2.61 mg/L, the removal rates of NH3-N and TP were the best, up to 100.00% and 76.38% respectively. The results show that it is feasible to use mussel shells as the media of BAF, and TP concentration has certain influence on the performance of the system dealing with domestic wastewater.展开更多
This study is aimed at evaluating alternative designs of waste stabilization ponds (WSPs) and constructed wetlands (CWs) for Kaputiei Housing Estate consisting of 2000 low cost housing units in Kenya. The entire analy...This study is aimed at evaluating alternative designs of waste stabilization ponds (WSPs) and constructed wetlands (CWs) for Kaputiei Housing Estate consisting of 2000 low cost housing units in Kenya. The entire analysis was carried out by simulating the effectiveness and purification efficiencies of WSPs and CWs in terms of Biological Oxygen Demand (BOD) reduction and faecal coliform (FC) removal under different scenarios of water treatment systems that included Re-sizing of the initial sewage treatment system, optimizing the design of the initial system and design of hybrid system for the estate. The graphic comparison of the simulated parameters under different scenarios showed that a hybrid design that combines both the WSPs and CWS provides an effluent BOD of 20 mg/l and 195 FC per 100 ml that meets the standard effluent discharge that is acceptable for unrestricted crop irrigation and thus will be reused in the housing estate for kitchen gardening and agroforestry.展开更多
Corrosion of burning urban domestic wastes to alkali-resistant bricks and spalling-resistant high alumina bricks was researched by static crucible method and SEM in order to choose refractories for cement rotary kilns...Corrosion of burning urban domestic wastes to alkali-resistant bricks and spalling-resistant high alumina bricks was researched by static crucible method and SEM in order to choose refractories for cement rotary kilns for collaboratively disposing wastes. The result indicates that the main corrosion mechanism is slag permeation and corrosion ; the emitted high temperature gases containing alkali, sulfur and chlorine during burning the wastes re- act with refractories forming low melting point sulfate, chloride and compound salts, which metamorphose the refractories, and the loose metamorphic layer is easy to spall under thermal stress. So, corrosion resistance and spaUing resistance shall be taken into account when choosing refractories for cement rotary kilns for collaboratively disposing wastes. It is suggested that decomposition furnaces should adopt spaUing resistant high alumina bricks and anti-coating SiC castables, and preheating equipment should adopt high strength alkali-resistant bricks and castables.展开更多
In recent years, the quantity of our country's municipal damestic wustes increase rapidly, but the waste disposal still has problems, such as the simple way of processing, wasting the resources, the serious environme...In recent years, the quantity of our country's municipal damestic wustes increase rapidly, but the waste disposal still has problems, such as the simple way of processing, wasting the resources, the serious environmental pollution and so on. By holding waste minimization as the center, the developed countries have formed perfect waste management system, Based on analyzing the status quo and problems of processing in our country, on the principle of benefit, scale, waste minimization, reclamation and hazard-free treatment, according to the recycling model of processing, the article has constructed ant country's domestic wastes management system, proposed the meusures of promoting the operation of system. It has realized the traasformatian of waste management system from terminal disposal to source reduction. ewhieved the goals, including domestic wastes categorizing and reclaiming, industrialization and non-pollution processing, and finally brought sustainable development for resources, environment, economy and society.展开更多
Domestic wastes have become an importer topic of environmental protection research. From the social cost of treating domestic wastes, this article analyzes present environmental pollution caused by neglected externali...Domestic wastes have become an importer topic of environmental protection research. From the social cost of treating domestic wastes, this article analyzes present environmental pollution caused by neglected externality when we discharge domestic wastes in the method of analysis on the difference between marginal personal cost and marginal social cost; It also proves the necessity and the importance of levying pollution tax and proposes the measures of eontrolling environmental potlution caused by domestic wastes.展开更多
基金support of the Yaque del Norte Water Fund(FAYN),INTEC(Grant No.CBA-330810-2020-P-1)Fondo Dominicano de Ciencia y Tecnologia(FONDOCYT)(Grant No.2022-2B2-161)。
文摘Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa,the Dominican Republic.The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand(BOD5)and chemical oxygen demand,but not for the removal of phosphorus and fecal coliforms.In addition,a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions.The concentrations of heavy metals,such as zinc,copper,chromium,and iron,were found to decrease in the effluent of the wetland,and the concentrations for nickel and manganese tended to increase.The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards.The construction cost of these facilities was around 200 USD per population equivalent,similar to the cost in other countries in the same region.This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen,use of endemic plants that bioaccumulate heavy metals,combination of constructed wetlands with filtration on activated carbon,and inclusion of water purification processes that allow to evaluate the reuse of treated water.
基金Supported by National Natural Science Foundation of China(50908116 )211 Foundation of Nanjing Normal University(2009112XGQ0054)+1 种基金Jiang su High-funded Construction ProjectsMajor Project of Jiangsu Provincial Department of Education(2009105TSJ0165)~~
文摘The combination method of intermittent influent and vertical flow wetlands (VFW) was used in the test to treat the domestic wastewater. Four artificial wetlands including Typha latifolia wetland,Phragmites australis (P.H.) wetland,polyculture wetlands (Typha latifolia and Phragmites australis) and non-vegetation wetland were established in the test. The effects of hydraulic retention time (HRT) and plant species on pollutants removal efficiencies were studied. The results showed that when HRT=7,the treatment efficiencies of wetlands with plants for the removal of TN and NH+4-N were up to 99.65% and 99.58%,respectively. For the control wetland,TN removal efficiency was up to 87.9% when HRT were 6 days,and NH+4-N removal efficiency was up to 91.8% when HRT were 5 days. TP removal efficiencies of four wetlands were higher than 93% when HRT was 6 days. Through the studies on different plants,it was found that vegetation wetlands had better nitrogen removal efficiency than non-vegetation wetland. The treatment efficacy of Phragmites australis wetland and polyculture wetland was better than Typha latifolia wetland.
基金Supported by Agricultural Scientific and Technological Achievement Transformation and Popularization Project of Tianjin(201003010)~~
文摘In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Village of Xiqing District into 3 groups: compostable materials, recyclable materials and toxics on the basis of the constructed secondary classification mode of domestic waste. The study focused on waste generation strength and classification features, compared the waste generation features between rural and urban residents, and analyzed the re- lation between waste generation strength and economic and cultural factors. The re- sults indicated that the average generation speed of urban domestic waste was 423.08 g/(d.capita), and that of rural domestic waste was 629.89 g/(d.capita), there was significant difference between rural and urban compost generation strength (P= 0.00002), while the generation strength of recyclable materials and toxics between rural and urban areas had no significant difference (P=0.471 and P=0.099, respec- tively). Secondary classification mode is an effective source classification mode for domestic wastes and has positive effects on waste reduction and treatment.
基金Supported by the Ministry of Science and Technology of China!(No.96- 92 0 - 0 9- 0 4 )
文摘Experiments on treatment of domestic wastewater by membrane bioreactors were carried out.The results showed that this process could produce good quality effluent with low COD,turbidity and total count of bacteria.With intermittent operation and continuous aeration,the membrane flux was kept steady.The mechanisms of removing COD through membrane,the structure of membrane and filtration resistance were also discussed.
基金Supported by The Important Special Item of National Water Body Pollution Control and Treatment Science Technology(2009ZX07528005)~~
文摘By combining with the actual situation in the rural area,the practical technology of domestic wastewater treatment which had the wide popularization value was developed in the rural area of Taihu Basin.Moreover,the multi-soil-layering system was used to treat the concentrated rural domestic wastewater,and the demonstration project was established in Fenshui Village,Yixing,Jiangsu.The result showed that the infrastructure and operating cost of system was low,and the treatment effect was good.The average removal ratios of COD,NH+4-N,TN,TP and SS were respectively 70%,83%,59%,76% and 94%.The quality of yielding water could reach Grade A standard of Pollutant Emission Standards in Urban Wastewater Treatment Plant.
基金supported by the National Natural Science Foundation of China(No.50478040).
文摘The production of N2O during nitrogen removal from real domestic wastewater was investigated in a lab-scale aerobic-anoxic sequencing batch reactor with a working volume of 14 L. The results showed that the total N2O-N production reached higher than 1.87 mg/L, and up to 4% of removed nitrogen was converted into N20. In addition, N20 led to a much higher greenhouse effect than CO2 during aerobic reaction phase, this proved that N2O production could not be neglected. The N2O-N production during nitrification was 1.85mg/L, whereas, during denitrification, no N2O was produced, nitrification was the main source of N2O production during nitrogen removal. Furthermore, during denitrification, the dissolved N2O at the end of aeration was found to be further reduced to N2. Denitrification thus had the potential of controlling N2O production.
文摘With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang Town in Loess Plateau region as example,the source,amount and harms of rural domestic waste were analyzed firstly,as well as the current situation and existing problems of treatment,and then a suitable waste disposal technology for the town was chosen,finally the reasonable treatment methods combining new countryside and non-new countryside with township was summed up,so as to realize the reduction,harmless and resource treatment of rural domestic waste.
文摘Domestic wastewater was treated by combined anaerobic biofilm aerobic membrane bioreactor(MBR) process, and part biomass in MBR was withdrawn to treat with ozone, then the ozonated sludge was returned to anaerobic inlet. In aerobic MBR, MLSS and DO were controlled at 3000—3500 mg/L and 0 8 mg/L respectively. Comparing the experimental results of two stages, it was noticed that ozonation did not affect the removal efficiency for organics but had a significant influence on the removals of NH 3 N and TN. During the ozonation period of two months, no excess sludge was wasted, and a zero sludge yield was obtained.
基金supported by the National Natural Science Foundation of China(Grant No.51108275)the Program for Liaoning Excellent Talents in Universities(LNET)(Grant No.LJQ2012101)+2 种基金the Program for New Century Excellent Talents in Universities(Grant No.NCET-11-1012)the Science and Technology Program of Liaoning Province(Grants No.2011229002 and2013229012)the Basic Science Research Fund in Northeastern University(Grants No.N130501001 and N140105003)
文摘In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.
基金Supported by Funding Project for Academic Human Resources Development in Institutions of Higher Leading under the Juris-diction of Beijing Municipality [PHR(IHLB)], the National Natural Science Foundation of China (No.50478040)the Na-tional Key Technologies R&D Program of China (No.2006BAC19B03).
文摘The objective of this paper was to examine the feasibility of partial nitrification from raw domestic wastewater at ambient temperature by aeration control only. Airflow rate was selected as the sole operational parameter. A 14L sequencing batch reactor was operated at 23℃ for 8 months, with an input of domestic wastewater. There was a prolgrammed decrease of the airflow rate to 28L·h^-1, the corresponding average dissolved oxygen (DO) was 0.32mg·h^-1, and the average nitrite accumulation rate increased to 92.4% in 3 weeks. Subsequently, further increase in the airflow rate to 48L·h^-1 did not destroy the partial nitrification to nitrite, with average DO of 0.60mg·h^-1 and nitrite accumulating rate of 95.6%. The results showed that limited airflow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate and that this system showed relatively stability at higher airflow rate independent of pH and temperature. About 50% of influent total nitrogen was eliminated coupling with partial nitrification, taking the advantage of low DO during the reaction.
基金supported by the National Natural Science Foundation of China(Grant No.51078074)the Key Project of the Chinese Ministry of Education(Grant No.308010)
文摘With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time (HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter (AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91 ℃ ; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for NH4-N, 19% to 23% for NO3-N, and 12% to 22% for TE In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for NH4-N, 30% to 34% for NO3-N, and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling.
基金This work was supported by the Fundamental Research Funds for the Central Universities,CHD(grant number 300102212906)the Key R&D Plan of Shaanxi Province(grant number 2023-YBSF-390)+1 种基金the Innovation Capability Support Program of Shaanxi(grant number 2022TD-07)the Xianyang City,Shaanxi Province,China 2019 Key Research and Development Program(grant number 2019k02-125).
文摘Domestic waste incineration slag(WIS)includes fly ash and slag.Fly ash is classified as hazardous waste because it contains heavy metals.Most of slag are directly stacked or landfilled due to problems such as large output and low utilization rate.Harmless treatment is imminent.If WIS is used effectively in the road engineering,which can realize the high-quality and high-efficiency recycling of WIS,and it is of great significance to save resources and protect the environment.This study applies a geopolymer prepared from WIS fly ash as a stabilizing agent in WIS blending macadam for use as a pavement base mixture,and reports the mechanical properties(unconfined compressive strength,splitting strength,and resilience modulus)of the geopolymer-stabilized WIS blending macadam(GeoWIS).The leaching concentrations of harmful heavy metals of GeoWIS soaked in water were also investigated.Finally,the strength formation and heavy metal stability mechanisms were explored.The unconfined compressive strength,splitting strength,and compressive resilient modulus of GeoWIS all increased with increasing geopolymer content and decreasing WIS content.The strength of GeoWIS was derived from its geopolymerization and hydration products(C-S-H gel,N-A-S-H gel,and AFt).When the geopolymer content reached 12%–14%,the GeoWIS without natural macadam met the strength criterion of the asphalt pavement base.Through physical adsorption and chemical bonding,the geopolymer significantly reduced the leaching of harmful heavy metals.In GeoWIS with 50%WIS and stabilized with 10%geopolymer,the Cr,Ni,Cd,and Pb concentrations met the grade III groundwater standard.Concentrations of heavy metals leached from GeoWIS are low and exert little impact on environment.
文摘According to the characteristics of oil containing wastewater, four strains of microorganism, named TA-11, TA-17, HA-9, HD-1, were picked out from the oil contaminated soil and activated sludge of biochemical treatment system of an asphalt plant wastewater in Panjin. They can degrade oil and CODCr in oil containing wastewater. The research result showed that each strain of microorganisms can remove oil and CODCr in oil containing wastewater effectively when the pH value was 7.0, the temperature was 30 degree Celsius, the rotation speed was 140r/min and the inoculation amount was 10%. Especially the highest removal ratio of CODCr was 68% after growth of 64 hours. The removal ratio of CODCr in oil containing wastewater of mixed bacilli was much higher than that of unitary bacilli, and mixing a certain amount of domestic sewage with the oil containing wastewater will also improve the removal rate of CODCr.
文摘Wastewater treatment is a problem with much acuity in the city of Maradi in general, and particularly in the Communal District I of Maradi. It is for this reason that the present study was conducted which deals with wastewater sanitation. The main objective of this study conducted through a survey is to investigate in the domestic wastewater sanitation in the Communal District I of Maradi city. Specifically, the study aims to estimate the amount of wastewater produced by households and to analyze the sanitation system at household and at district levels. The wastewater management practices in this district were assessed through a descriptive cross sectional study in which a total of 129 households were selected by sample distribution technique in the district neighborhoods and studied using interviewer and administered questionnaires at communal and household levels. The results of the study showed that the amount of domestic wastewater generated is quite large, about 32.27 m3 per person per day, and this comes from several sources including showers, laundry, dishwashing and income generating activities. The results also revealed that the unhealthy state of the Communal District I of Maradi is related to the absence of a wastewater treatment system, the methods and practices used in its management, and the population is also largely responsible for this unhealthy state and not willing to participate to a sanitation project.
文摘Uncontrolled urbanization of African cities and the lack of municipal waste management services in these cities make landscapes become places of multiple and varied interactions between health and environment. In this sense, under strong urban growth in a context of sub-equipment sanitation, the city of Maradi doesn’t escape to this situation which results in the spread of pollution (release of unpleasant odors, and proliferation of mosquitoes) and many diseases posing multiple health problems. Our study focuses only on liquid waste especially domestic wastewater. To study the different domestic wastewater management options in the town of Maradi, a survey was conducted among 340 households in 17 districts. We note in most cases a crucial of waste management infrastructure (drainage and wastewater treatment) in the city. Thus, only the individual sanitation facilities are used. In the town of Maradi, in addition to the storm drains, there are, in old districts, ditches that discharge wastewater and unfortunately end up in rivers without treatment. Total domestic wastewater production is estimated at 86761.28 m3 per day. This water is mostly from laundry activities, bathing, dishes, and is discharged in large part through the streets, by more than 60% of households. Also, pit emptying is performed at 39.11% by the vehicle Peugeot tank. The quality of service rendered by an actor is very important to encourage households to join. Existing autonomous sanitation facilities are poorly designed and poorly maintained. Fecal sludge is dumped in a hole near saturated latrines;this work is mainly done by manual scavengers or dumped in fields or on nearby vacant land concessions.
基金Supported by the Natural Science Foundation of Zhejiang Province,China(LY14D060003)Science and Technology Plan Project of Zhoushan City(2014C41004+1 种基金2014C11006)Governmental Public Industrial Research Special Funds for Maine Projects(201305012-2)
文摘The combination of hydrolytic acidification and biological aerated filter (BAF) filled with mussel shells was used to treat domestic wastewater, and the removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) by the system were analyzed under different TP concentrations. When TP concentration ranged from 12.39 to 14.69 mg/L, the removal rate of COD was the best, over 90.92% ; as TP concentration varied from 2.26 to 2.61 mg/L, the removal rates of NH3-N and TP were the best, up to 100.00% and 76.38% respectively. The results show that it is feasible to use mussel shells as the media of BAF, and TP concentration has certain influence on the performance of the system dealing with domestic wastewater.
文摘This study is aimed at evaluating alternative designs of waste stabilization ponds (WSPs) and constructed wetlands (CWs) for Kaputiei Housing Estate consisting of 2000 low cost housing units in Kenya. The entire analysis was carried out by simulating the effectiveness and purification efficiencies of WSPs and CWs in terms of Biological Oxygen Demand (BOD) reduction and faecal coliform (FC) removal under different scenarios of water treatment systems that included Re-sizing of the initial sewage treatment system, optimizing the design of the initial system and design of hybrid system for the estate. The graphic comparison of the simulated parameters under different scenarios showed that a hybrid design that combines both the WSPs and CWS provides an effluent BOD of 20 mg/l and 195 FC per 100 ml that meets the standard effluent discharge that is acceptable for unrestricted crop irrigation and thus will be reused in the housing estate for kitchen gardening and agroforestry.
文摘Corrosion of burning urban domestic wastes to alkali-resistant bricks and spalling-resistant high alumina bricks was researched by static crucible method and SEM in order to choose refractories for cement rotary kilns for collaboratively disposing wastes. The result indicates that the main corrosion mechanism is slag permeation and corrosion ; the emitted high temperature gases containing alkali, sulfur and chlorine during burning the wastes re- act with refractories forming low melting point sulfate, chloride and compound salts, which metamorphose the refractories, and the loose metamorphic layer is easy to spall under thermal stress. So, corrosion resistance and spaUing resistance shall be taken into account when choosing refractories for cement rotary kilns for collaboratively disposing wastes. It is suggested that decomposition furnaces should adopt spaUing resistant high alumina bricks and anti-coating SiC castables, and preheating equipment should adopt high strength alkali-resistant bricks and castables.
文摘In recent years, the quantity of our country's municipal damestic wustes increase rapidly, but the waste disposal still has problems, such as the simple way of processing, wasting the resources, the serious environmental pollution and so on. By holding waste minimization as the center, the developed countries have formed perfect waste management system, Based on analyzing the status quo and problems of processing in our country, on the principle of benefit, scale, waste minimization, reclamation and hazard-free treatment, according to the recycling model of processing, the article has constructed ant country's domestic wastes management system, proposed the meusures of promoting the operation of system. It has realized the traasformatian of waste management system from terminal disposal to source reduction. ewhieved the goals, including domestic wastes categorizing and reclaiming, industrialization and non-pollution processing, and finally brought sustainable development for resources, environment, economy and society.
基金Supported by the National Social Science Foundation of China (05BJY021) National Natural Science Foundation of China (70371049).
文摘Domestic wastes have become an importer topic of environmental protection research. From the social cost of treating domestic wastes, this article analyzes present environmental pollution caused by neglected externality when we discharge domestic wastes in the method of analysis on the difference between marginal personal cost and marginal social cost; It also proves the necessity and the importance of levying pollution tax and proposes the measures of eontrolling environmental potlution caused by domestic wastes.