期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Making the Bread: Insights from Newly Synthesized AIIohexaploid Wheat 被引量:6
1
作者 Ai-li Li Shuai-feng Geng +2 位作者 Lian-quan Zhang Deng-cai Liu Long Mao 《Molecular Plant》 SCIE CAS CSCD 2015年第6期847-859,共13页
Bread wheat (or common wheat, Triticum aestivum) is an allohexaploid (AABBDD, 2n = 6x = 42) that arose by hybridization between a cultivated tetraploid wheat T. turgidum (AABB, 2n = 4x = 28) and the wild goatgra... Bread wheat (or common wheat, Triticum aestivum) is an allohexaploid (AABBDD, 2n = 6x = 42) that arose by hybridization between a cultivated tetraploid wheat T. turgidum (AABB, 2n = 4x = 28) and the wild goatgrass Aegilops tauschfi (DD, 2n = 2x = 14). Polyploidization provided niches for rigorous genome modification at cytogenetic, genetic, and epigenetic levels, rendering a broader spread than its progenitors. This review summarizes the latest advances in understanding gene regulation mechanisms in newly synthesized allo- hexaploid wheat and possible correlation with polyploid growth vigor and adaptation. Cytogenetic studies reveal persistent association of whole-chromosome aneuploidy with nascent allopolyploids, in contrast to the genetic stability in common wheat. Transcriptome analysis of the euploid wheat shows that small RNAs are driving forces for homoeo-allele expression regulation via genetic and epigenetic mechanisms. The ensuing non-additively expressed genes and those with expression level dominance to the respective pro- genitor may play distinct functions in growth vigor and adaptation in nascent allohexaploid wheat. Further genetic diploidization of allohexaploid wheat is not random. Regional asymmetrical gene distribution, rather than subgenome dominance, is observed in both synthetic and natural allohexaploid wheats. The combinatorial effects of diverged genomes, subsequent selection of specific gene categories, and subgenome-specific traits are essential for the successful establishment of common wheat. 展开更多
关键词 ALLOPOLYPLOIDY synthetic wheat HETEROSIS adaptation expression level dominance
原文传递
Expression patterns and functional divergence of homologous genes accompanied by polyploidization in cotton(Gossypium hirsutum L.) 被引量:2
2
作者 Zhen Peng Hua Cheng +5 位作者 Gaofei Sun Zhaoe Pan Xiao Wang Xiaoli Geng Shoupu He Xiongming Du 《Science China(Life Sciences)》 SCIE CAS CSCD 2020年第10期1565-1579,共15页
Naturally allotetraploid cotton has been widely used as an ideal model to investigate gene expression remodeling as a consequence of polyploidization.However,the global gene pattern variation during early fiber develo... Naturally allotetraploid cotton has been widely used as an ideal model to investigate gene expression remodeling as a consequence of polyploidization.However,the global gene pattern variation during early fiber development was unknown.In this study,through RNA-seq technology,we comprehensively investigated the expression patterns of homologous genes between allotetraploid cotton(G.hirsutum)and its diploid progenitors(G.arboreum and G.raimondii)at the fiber early development stage.In tetraploid cotton,genes showed expression level dominance(ELD)bias toward the A genome.This phenomenon was explained by the up-/downregulation of the homologs from the nondominant progenitor(D genome).Gene ontology(GO)enrichment results indicated that the ELD-A genes might be a prominent cause responsible for fiber property change through regulating the fatty acid biosynthesis/metabolism and microtubule procession,and the ELD-D genes might be involved in transcription regulation and stress inducement.In addition,the number and proportion of completely A-and D-subfunctionalized gene were similar at different fiber development stages.However,for neofunctionalization,the number and proportion of reactivated D-derived genes were greater than those of A at 3 and 5 DPA.Eventually,we found that some homologous genes belonging to several specific pathways might create novel asymmetric transcripts between two subgenomes during polyploidization and domestication process,further making the fiber property meet the human demands.Our study identified determinate pathways and their involved genes between allotetraploid cotton and their progenitors at early fiber development stages,providing new insights into the mechanism of cotton fiber evolution. 展开更多
关键词 GOSSYPIUM fiber development polyploid evolution expression level dominance sub-and neofunctionalization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部