BACKGROUND: It is proved that the onset of Parkinson disease companies with neuronal apoptosis of dopamine in substantia nigra of midbrain. Previous researches on neuronal apoptosis of dopamine were analyzed on their...BACKGROUND: It is proved that the onset of Parkinson disease companies with neuronal apoptosis of dopamine in substantia nigra of midbrain. Previous researches on neuronal apoptosis of dopamine were analyzed on their consecutive tissue sections with immunohistochemical single-labeling method, immunofluorescence and electron microscope, and there are significant differences.OBJECTIVE : To observe the feasibility of neuronal apoptosis of dopamine with in situ end labeling and tyrosine-hydroxylase antibody immunohistochemical double-labeling staining technique.DESIGN : Controlled study.SETTING: College of Pharmacology of Taishan Medical College; College of Management of Taishan Medical College. MATERIALS : Wistar rats with 2 weeks old and of clean grade were provided by the Animal Center of Taishan Medical College. In situ end labeling kit (terminal deoxynucleotidyl transferase, mixed reactive solution of nucleotide, transfusion-POD), monoclonal antibody of rat antibody against tyrosine hydroxylase (Boehriuser). METHODS: The experiment was completed at the Pharmacological Laboratory of Taishan Medical College from February to December 2005. Tissue from midbrain of rats was taken out to make paraffin sections to observe the neuronal apoptosis of dopamine under microscope with in situ end labeling and tyrosine-hydroxylase antibody immunohistochemical double-labeling staining technique.MAIN OUTCOME MEASURES : Neuronal apoptosis of dopamine with in situ end labeling and tyrosine-hydroxylase antibody immunohistochemical double-labeling staining technique. RESULTS: ① After double-labeling staining, two kinks of positive products were observed in neurons of dopamine which were suffered from apoptosis. One stained with tyrosine hydroxylase was hyacinthine, and the other stained with in situ end labeling was buffy. Cells of positive products stained with in situ end labeling shaped as strap and bend and was distributed in clustering. Cytoplasm was hyacinthine, staining was symmetrical, and cellular ecphyma was observed. Nucleus was stained vacantly which was coincidence with form of neurons of dopamine. ②Apoptosis showed strictly in cytoplasm and nucleus at the aspect of morphology. Cytoplasm stained with in situ end labeling was hardly to recognize because of the usage of double-labeling staining technique, but nucleus was still characterized by apoptosis. The behavior of positive products stained with in situ end labeling was described as following: nucleus was buffy; karyopycnosis was round and irregular; caryotin was integrated into clump which was distributed at the border of nucleus and shaped as demilune and anular; positive signals were limited in nucleus and coincidence with morphological changes of apoptosis. However, blue and positive products were observed in cytoplasm of neurons of dopamine which did not occur apoptosis, and the nucleus was not labeled. Therefore, processing apoptosis of neurons of dopamine could be recognized. CONCULSION: Double-labeling staining technique can be used to correctly reveal histological and morphological changes of neuronal apoptosis of dopamine during its onset and development.展开更多
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of t...Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.展开更多
Microglia-mediated inflammatory responses have been shown to play a crucial role in Parkinson’s disease. In addition, exosomes derived from mesenchymal stem cells have shown anti-inflammatory effects in the treatment...Microglia-mediated inflammatory responses have been shown to play a crucial role in Parkinson’s disease. In addition, exosomes derived from mesenchymal stem cells have shown anti-inflammatory effects in the treatment of a variety of diseases. However, whether they can protect neurons in Parkinson’s disease by inhibiting microglia-mediated inflammatory responses is not yet known. In this study, exosomes were isolated from human umbilical cord mesenchymal stem cells and injected into a 6-hydroxydopamine-induced rat model of Parkinson’s disease. We found that the exosomes injected through the tail vein and lateral ventricle were absorbed by dopaminergic neurons and microglia on the affected side of the brain, where they repaired nigral-striatal dopamine system damage and inhibited microglial activation. Furthermore, in an in vitro cell model, pretreating lipopolysaccharide-stimulated BV2 cells with exosomes reduced interleukin-1β and interleukin-18 secretion, prevented the adoption of pyroptosis-associated morphology by BV2 cells, and increased the survival rate of SH-SY5Y cells. Potential targets for treatment with human umbilical cord mesenchymal stem cells and exosomes were further identified by high-throughput microRNA sequencing and protein spectrum sequencing. Our findings suggest that human umbilical cord mesenchymal stem cells and exosomes are a potential treatment for Parkinson’s disease, and that their neuroprotective effects may be mediated by inhibition of excessive microglial proliferation.展开更多
In the present study,we investigated the mechanisms underlying the mediation of iron transport by Ltype Ca^2+ channels(LTCCs)in primary cultured ventral mesencephalon(VM)neurons from rats.We found that cotreatment wit...In the present study,we investigated the mechanisms underlying the mediation of iron transport by Ltype Ca^2+ channels(LTCCs)in primary cultured ventral mesencephalon(VM)neurons from rats.We found that cotreatment with 100 lmol/L FeSO4 and MPP^+(1-methyl-4-phenylpyridinium)significantly increased the production of intracellular reactive oxygen species,decreased the mitochondrial transmembrane potential and increased the caspase-3 activation compared to MPP^+ treatment alone.Co-treatment with 500 lmol/L CaCl2 further aggravated the FeSO4-induced neurotoxicity in MPP^+-treated VM neurons.Co-treatment with 10 lmol/L isradipine,an LTCC blocker,alleviated the neurotoxicity induced by co-application of FeSO4 and FeSO4/CaCl2.Further studies indicated that MPP^+treatment accelerated the iron influx into VM neurons.In addition,FeSO4 treatment significantly increased the intracellular Ca^2+ concentration.These effects were blocked by isradipine.These results suggest that elevated extracellular Ca^2+ aggravates ironinduced neurotoxicity.LTCCs mediate iron transport in dopaminergic neurons and this,in turn,results in elevated intracellular Ca^2+ and further aggravates iron-induced neurotoxicity.展开更多
Parkinson’s disease(PD)is one of the most common neurodegenerative disorders of aging,characterized by the degeneration of dopamine neurons(DA neurons)in the substantial nigra,leading to the advent of both motor symp...Parkinson’s disease(PD)is one of the most common neurodegenerative disorders of aging,characterized by the degeneration of dopamine neurons(DA neurons)in the substantial nigra,leading to the advent of both motor symptoms and non-motor symptoms.Current treatments include electrical stimulation of the affected brain areas and dopamine replacement therapy.Even though both categories are effective in treating PD patients,the disease progression cannot be stopped.The research advance into cell therapies provides exciting potential for the treatment of PD.Current cell sources include neural stem cells(NSCs)from fetal brain tissues,human embryonic stem cells(hESCs),induced pluripotent stem cells(iPSCs)and directly induced dopamine neurons(iDA neurons).Here,we evaluate the research progress in different cell sources with a focus on using iPSCs as a valuable source and propose key challenges for developing cells suitable for large-scale clinical applications in the treatment of PD.展开更多
Objective: Parkinson's disease(PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine(DA) neurons in the substantia nigra in the midbrain. Experimental and cli...Objective: Parkinson's disease(PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine(DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells(NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods: NSCs were isolated from 14‐week‐old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers: βⅢ‐tubulin and microtubule‐associated protein 2(neurons), tyrosine hydroxylase(DA neurons), and glial fibrillary acidic protein(glial cells). After a 6‐hydroxydopamine(6‐OHDA)‐lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6‐OHDA‐lesioned PD rats. Results: The motor behaviors of the PD rats were assessed by the number of apomorphine‐induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine‐induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions: Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.展开更多
Objective: This study aimed to use a systematic approach to evaluate the current utilization, safety, and effectiveness of cell therapies for neurological diseases in human. And review the present regulations, conside...Objective: This study aimed to use a systematic approach to evaluate the current utilization, safety, and effectiveness of cell therapies for neurological diseases in human. And review the present regulations, considering United States(US) as a representative country, for cell transplantation in neurological disease and discuss the challenges facing the field of neurology in the coming decades. Methods: A detailed search was performed in systematic literature reviews of cellular‐based therapies in neurological diseases, using Pub Med, web of science, and clinical trials. Regulations of cell therapy products used for clinical trials were searched from the Food and Drug Administration(FDA) and the National Institutes of Health(NIH).Results: Seven most common types of cell therapies for neurological diseases have been reported to be relatively safe with varying degrees of neurological recovery.And a series of regulations in US for cellular therapy was summarized including preclinical evaluations, sourcing material, stem cell manufacturing and characterization,cell therapy product, and clinical trials. Conclusions: Stem cell‐based therapy holds great promise for a cure of such diseases and will value a growing population of patients. However, regulatory permitting activity of the US in the sphere of stem cells, technologies of regenerative medicine and substitutive cell therapy are selective, theoretical and does not fit the existing norm and rules. Compiled well‐defined regulations to guide the application of stem cell products for clinical trials should be formulated.展开更多
文摘BACKGROUND: It is proved that the onset of Parkinson disease companies with neuronal apoptosis of dopamine in substantia nigra of midbrain. Previous researches on neuronal apoptosis of dopamine were analyzed on their consecutive tissue sections with immunohistochemical single-labeling method, immunofluorescence and electron microscope, and there are significant differences.OBJECTIVE : To observe the feasibility of neuronal apoptosis of dopamine with in situ end labeling and tyrosine-hydroxylase antibody immunohistochemical double-labeling staining technique.DESIGN : Controlled study.SETTING: College of Pharmacology of Taishan Medical College; College of Management of Taishan Medical College. MATERIALS : Wistar rats with 2 weeks old and of clean grade were provided by the Animal Center of Taishan Medical College. In situ end labeling kit (terminal deoxynucleotidyl transferase, mixed reactive solution of nucleotide, transfusion-POD), monoclonal antibody of rat antibody against tyrosine hydroxylase (Boehriuser). METHODS: The experiment was completed at the Pharmacological Laboratory of Taishan Medical College from February to December 2005. Tissue from midbrain of rats was taken out to make paraffin sections to observe the neuronal apoptosis of dopamine under microscope with in situ end labeling and tyrosine-hydroxylase antibody immunohistochemical double-labeling staining technique.MAIN OUTCOME MEASURES : Neuronal apoptosis of dopamine with in situ end labeling and tyrosine-hydroxylase antibody immunohistochemical double-labeling staining technique. RESULTS: ① After double-labeling staining, two kinks of positive products were observed in neurons of dopamine which were suffered from apoptosis. One stained with tyrosine hydroxylase was hyacinthine, and the other stained with in situ end labeling was buffy. Cells of positive products stained with in situ end labeling shaped as strap and bend and was distributed in clustering. Cytoplasm was hyacinthine, staining was symmetrical, and cellular ecphyma was observed. Nucleus was stained vacantly which was coincidence with form of neurons of dopamine. ②Apoptosis showed strictly in cytoplasm and nucleus at the aspect of morphology. Cytoplasm stained with in situ end labeling was hardly to recognize because of the usage of double-labeling staining technique, but nucleus was still characterized by apoptosis. The behavior of positive products stained with in situ end labeling was described as following: nucleus was buffy; karyopycnosis was round and irregular; caryotin was integrated into clump which was distributed at the border of nucleus and shaped as demilune and anular; positive signals were limited in nucleus and coincidence with morphological changes of apoptosis. However, blue and positive products were observed in cytoplasm of neurons of dopamine which did not occur apoptosis, and the nucleus was not labeled. Therefore, processing apoptosis of neurons of dopamine could be recognized. CONCULSION: Double-labeling staining technique can be used to correctly reveal histological and morphological changes of neuronal apoptosis of dopamine during its onset and development.
文摘Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.
基金supported by the Natural Science Foundation of Hebei Province,Nos.18967728D (to XQC),H2021423063 (to HXC)Youth Top Talent Project of Colleges and Universities in Hebei Province,No.BJ2021033 (to HXC)。
文摘Microglia-mediated inflammatory responses have been shown to play a crucial role in Parkinson’s disease. In addition, exosomes derived from mesenchymal stem cells have shown anti-inflammatory effects in the treatment of a variety of diseases. However, whether they can protect neurons in Parkinson’s disease by inhibiting microglia-mediated inflammatory responses is not yet known. In this study, exosomes were isolated from human umbilical cord mesenchymal stem cells and injected into a 6-hydroxydopamine-induced rat model of Parkinson’s disease. We found that the exosomes injected through the tail vein and lateral ventricle were absorbed by dopaminergic neurons and microglia on the affected side of the brain, where they repaired nigral-striatal dopamine system damage and inhibited microglial activation. Furthermore, in an in vitro cell model, pretreating lipopolysaccharide-stimulated BV2 cells with exosomes reduced interleukin-1β and interleukin-18 secretion, prevented the adoption of pyroptosis-associated morphology by BV2 cells, and increased the survival rate of SH-SY5Y cells. Potential targets for treatment with human umbilical cord mesenchymal stem cells and exosomes were further identified by high-throughput microRNA sequencing and protein spectrum sequencing. Our findings suggest that human umbilical cord mesenchymal stem cells and exosomes are a potential treatment for Parkinson’s disease, and that their neuroprotective effects may be mediated by inhibition of excessive microglial proliferation.
基金supported by grants from the National Natural Science Foundation of China(81671249)the Natural Science Foundation of Shandong Province,China(ZR2016CM04).
文摘In the present study,we investigated the mechanisms underlying the mediation of iron transport by Ltype Ca^2+ channels(LTCCs)in primary cultured ventral mesencephalon(VM)neurons from rats.We found that cotreatment with 100 lmol/L FeSO4 and MPP^+(1-methyl-4-phenylpyridinium)significantly increased the production of intracellular reactive oxygen species,decreased the mitochondrial transmembrane potential and increased the caspase-3 activation compared to MPP^+ treatment alone.Co-treatment with 500 lmol/L CaCl2 further aggravated the FeSO4-induced neurotoxicity in MPP^+-treated VM neurons.Co-treatment with 10 lmol/L isradipine,an LTCC blocker,alleviated the neurotoxicity induced by co-application of FeSO4 and FeSO4/CaCl2.Further studies indicated that MPP^+treatment accelerated the iron influx into VM neurons.In addition,FeSO4 treatment significantly increased the intracellular Ca^2+ concentration.These effects were blocked by isradipine.These results suggest that elevated extracellular Ca^2+ aggravates ironinduced neurotoxicity.LTCCs mediate iron transport in dopaminergic neurons and this,in turn,results in elevated intracellular Ca^2+ and further aggravates iron-induced neurotoxicity.
基金by National Natural Science Foundation of China(NSFC 81271251)The Science and Technology Developmental Fund of Shandong Province,China(2012GGA15049).
文摘Parkinson’s disease(PD)is one of the most common neurodegenerative disorders of aging,characterized by the degeneration of dopamine neurons(DA neurons)in the substantial nigra,leading to the advent of both motor symptoms and non-motor symptoms.Current treatments include electrical stimulation of the affected brain areas and dopamine replacement therapy.Even though both categories are effective in treating PD patients,the disease progression cannot be stopped.The research advance into cell therapies provides exciting potential for the treatment of PD.Current cell sources include neural stem cells(NSCs)from fetal brain tissues,human embryonic stem cells(hESCs),induced pluripotent stem cells(iPSCs)and directly induced dopamine neurons(iDA neurons).Here,we evaluate the research progress in different cell sources with a focus on using iPSCs as a valuable source and propose key challenges for developing cells suitable for large-scale clinical applications in the treatment of PD.
基金supported by the National Natural Science Foundation of China (NSFC, No. 81271251)
文摘Objective: Parkinson's disease(PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine(DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells(NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods: NSCs were isolated from 14‐week‐old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers: βⅢ‐tubulin and microtubule‐associated protein 2(neurons), tyrosine hydroxylase(DA neurons), and glial fibrillary acidic protein(glial cells). After a 6‐hydroxydopamine(6‐OHDA)‐lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6‐OHDA‐lesioned PD rats. Results: The motor behaviors of the PD rats were assessed by the number of apomorphine‐induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine‐induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions: Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.
基金supported by the National Basic Research Program (973 Program) of China (No. 2012CBA01307)National Natural Science Fund funded by the National Natural Science Foundation of China (No. 31171430)
文摘Objective: This study aimed to use a systematic approach to evaluate the current utilization, safety, and effectiveness of cell therapies for neurological diseases in human. And review the present regulations, considering United States(US) as a representative country, for cell transplantation in neurological disease and discuss the challenges facing the field of neurology in the coming decades. Methods: A detailed search was performed in systematic literature reviews of cellular‐based therapies in neurological diseases, using Pub Med, web of science, and clinical trials. Regulations of cell therapy products used for clinical trials were searched from the Food and Drug Administration(FDA) and the National Institutes of Health(NIH).Results: Seven most common types of cell therapies for neurological diseases have been reported to be relatively safe with varying degrees of neurological recovery.And a series of regulations in US for cellular therapy was summarized including preclinical evaluations, sourcing material, stem cell manufacturing and characterization,cell therapy product, and clinical trials. Conclusions: Stem cell‐based therapy holds great promise for a cure of such diseases and will value a growing population of patients. However, regulatory permitting activity of the US in the sphere of stem cells, technologies of regenerative medicine and substitutive cell therapy are selective, theoretical and does not fit the existing norm and rules. Compiled well‐defined regulations to guide the application of stem cell products for clinical trials should be formulated.