Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to st...Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.展开更多
A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-lik...A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-like in the length range of 5.0-10.0 μm. The results of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy indicate that pure aragonite CaCO3:Eu^3+ is prepared using microwave irradiation and the Eu^3+ ion as a luminescence center inhabits the site of Ca^2+. The photoluminescence excitation (PLE) spectrum shows that the strong broad band at around 270 nm and weak sharp lines in 300-550 nm are assigned to the charge transfer band of Eu^3+-O^2- and intra-configurational 4f-4f transitions of Eu^3+, respectively. The photoluminescence (PL) spectrum implies that the red luminescence can be attributed to the transitions from the ^5D0 excited level to the ^7FJ (J = 0, 1, 2, 3, 4) levels of Eu^3+ ions with the mainly electric dipole transition ^5D0 → ^7F2 (614 and 620 nm), and the Eu^3+ ions prefer to occupy the low symmetric site in the crystal lattice.展开更多
The structure of the low-temperature 4f^N→4f^N-15d excitation spectra of Eu^3+ and Tb^3+ doped in crystals LiYF4, YPO4 and CaF2 measured by van Pieterson et al. in 2002 was analyzed and assigned based on the simple...The structure of the low-temperature 4f^N→4f^N-15d excitation spectra of Eu^3+ and Tb^3+ doped in crystals LiYF4, YPO4 and CaF2 measured by van Pieterson et al. in 2002 was analyzed and assigned based on the simple model proposed by Duan and co-workers in the last few years. Some complemental discussion on effects of J-mixing on the f-d transition intensities for Eu^3+ due to the f-electron crystal-field interaction Hcf(f), which was ignored in the simple mod- el, was presented. Some previously unexplained peaks for Tb^3 + were interpreted to be spin-forbidden transitions to higher 5d crystal-field levels, or assigned to be f→d excitations with the core 4f7 excited from ^8S to ^6P, ^6I and ^6D, respectively. It is shown that the main structure of 4f-Sd excitation spectra of Eu^3+ and Tb^3+ can be well interpreted with the simple model.展开更多
Under different annealing temperatures, Eu 3+ doped SiO 2 gel and glass were prepared by sol gel method, and the structure and luminescent properties were studied with excitation spectra, emission spectra, IR ...Under different annealing temperatures, Eu 3+ doped SiO 2 gel and glass were prepared by sol gel method, and the structure and luminescent properties were studied with excitation spectra, emission spectra, IR and DTA TG. The results show that the fluorescent intensity tends to get stable when concentration of Eu 3+ doped is above 1 86 % (mass fraction) most water absorbed by the gel was removed at 300 ℃, and that the emission spectrum of Eu 3+ , with peaks at 614, 588, 577 nm, is due to 5D 0→ 7F 2, 5D 0→ 7F 1, 5D 0→ 7F 0 transitions, and the excitation peaks at 318, 362, 380, 393, 412 and 462 nm were observed. These results illustrate that the temperature range of 300~500 ℃ is critical for the structure conversion from gel to glass, and the fluorescence is strongly quenched by water.展开更多
The photoluminescence (PL) characteristics of Eu^3+ and Li^+ co-doped ZnO PL materials against heat-treatment temperature were discussed. The PL xerogel and powder samples were prepared by solgel process. The emis...The photoluminescence (PL) characteristics of Eu^3+ and Li^+ co-doped ZnO PL materials against heat-treatment temperature were discussed. The PL xerogel and powder samples were prepared by solgel process. The emission spectra of all samples showed two broad bands peaking at 590 nm and 620 nm under UV-Vis excitation. But the relative intensity of red PL (620 nm) was much greater than that of green PL (590 nm) of the same sample, that s to say, the red color was the main luminescence. With heat-treatment temperature increase, the two kinds of colors PL intensity decreased, and both the red and green PL intensity of the xerogel samples was much greater than those of powder samples respectively. The XRD patterns revealed that Eu^3+ ions were successfully incorporated in ZnO crystals in xerogel samples. When heat-treatment temperature reached 350 ℃, the Eu^3+ began to separate out of the ZnO crystals and Eu2O3 crystals came into being. When the powder sample was subjected to UV-Vis excitation, the energy transfered from the host ZnO emission to Eu^3+ became weaker than the xerogel sample.展开更多
YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Dopi...YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.展开更多
Single phase of BaGd0.9-xMxEu0.1B9O16(M=Al or Sc, 0≤x≤0.3) powder was prepared by the solid-state reaction and its photoluminescence(PL) properties were investigated under ultraviolet(UV) and vacuum ultraviole...Single phase of BaGd0.9-xMxEu0.1B9O16(M=Al or Sc, 0≤x≤0.3) powder was prepared by the solid-state reaction and its photoluminescence(PL) properties were investigated under ultraviolet(UV) and vacuum ultraviolet(VUV) excitation.Monitored with 613 nm emission, the excitation spectra of BaGd0.9-xMxEu0.1B9O16 consisted of three broad bands peaking at about 242, 208, and 142 nm, respectively.The one at about 242 nm originated from the charge transfer band(CTB) of O2-→Eu^3+.The other two were assigned to the absorption of the host, which was overlapped with absorptions among borate groups, f→d transition of RE3+(RE=Gd, Eu), and the charge transfer transition of O2-→Gd^3+.The maximum emission peak was observed at about 613 nm in the emission spectra of BaGd0.9-xMxEu0.1B9O16 under both 254 and 147 nm excitation, which originated from the electric dipole 5D0→7F2 transition of Eu^3+.When excited with 254 nm, the integral emission intensity of Eu^3+ increased after Al^3+ or Sc^3+ substituting Gd^3+ partly in BaGd0.9Eu0.1B9O16.Under 147 nm excitation, the integral emission intensity of Eu^3+ decreased after some Gd^3+ was replaced by Sc^3+, but increased after adding appropriate Al^3+ into BaGd0.9Eu0.1B9O16.展开更多
Al-doped and B, Al-codoped silica xerogel was fabricated by sol-gel process. The influence of B ions and annealing temperature on luminescent properties of phosphors were studied by using fluorescence spectrum, X-ray ...Al-doped and B, Al-codoped silica xerogel was fabricated by sol-gel process. The influence of B ions and annealing temperature on luminescent properties of phosphors were studied by using fluorescence spectrum, X-ray diffraction, DSC, TG/DTG analysis and IR spectrum. The heat treatment has a large effect on the luminescent properties. Under 248 nm excitation, the emission spectrum of samples heated shows characteristic emission peaks of Eu^3+ ions are, which are due to the transitions of ^5D0→^7FJ(J = 0, 1, 2, 3, 4) of Eu^3+ , respectively. The transition of ^5D0→^7F1 is split into two peaks.展开更多
A series of SrIn2 O4 :Eu^3+ phosphors are synthesized by a high temperature solid-state method, and their luminescent properties are investigated. They can be excited by 395-nm radiation, and produce red emission (...A series of SrIn2 O4 :Eu^3+ phosphors are synthesized by a high temperature solid-state method, and their luminescent properties are investigated. They can be excited by 395-nm radiation, and produce red emission (619 nm); however, they have a low absorption of near-ultraviolet light with the wavelength of 400nm–405 nm. When co-doped with A^+ (A=Li, Na, K), the emission intensity of SrIn2O4 :Eu^3+ is significantly enhanced, but its emission and excitation spectral profile is unchanged. With co-doping Sm^3+ , not only is the emission intensity of SrIn2 O4 :Eu^3+ enhanced, but also the absorption is broadened and strengthened in the range of 400 nm–405nm. The effect of Sm^3+ -doped content on the emission intensity of SrIn2O4 :Eu^3+ , Sm^3+ is investigated, and the optimal Sm^3+ content is 0.02 mol.展开更多
The Ce^3+ and Eu^2+ ions codoped calcium zinc chlorosilicate Ca_8Zn(SiO_4)_4Cl_2 phosphors have been synthesized for the first time. The diffuse reflection, excitation and emission spectra of Ca_8Zn(SiO_4)_4Cl_2∶Ce^3...The Ce^3+ and Eu^2+ ions codoped calcium zinc chlorosilicate Ca_8Zn(SiO_4)_4Cl_2 phosphors have been synthesized for the first time. The diffuse reflection, excitation and emission spectra of Ca_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ have been measured at room temperature. The luminescence sensitizaiton of Eu^2+ by Ce^3+ inCa_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ has been expounded under the excitation of ultraviolet light and the efficient nonradiative energy transfer from Ce^3+ to Eu^2+ in this system is confirmed.展开更多
By using a whitelight lamp, an Ar+ ion laser whosewavelength was tuned to 457. 9 nmand a tunable Rh 6G dye laser(linewidth: 0. 5 cm-1) pumped bythe second harmonic of a Nd: YAGlaser as light sources and using amonochr...By using a whitelight lamp, an Ar+ ion laser whosewavelength was tuned to 457. 9 nmand a tunable Rh 6G dye laser(linewidth: 0. 5 cm-1) pumped bythe second harmonic of a Nd: YAGlaser as light sources and using amonochromator, a phase-lockingamplifier and a computer as the data detecting system, the transmission spectrum, fluorescence spectra, excitation spectrum and siteselective fluorescence spectra ofthe Eu3+: Y2SiO5 crystal were observed. More than thirty out of thetotal fifty spectral lines were observed for 5D0→7F0,1,2,3,4 transitions. The Eu3+ ions occupy twokinds of the Y3+ sites with the lowsymmetry in this crystal. The difference of the wavelengths of thetwo Eu3+ sites for 7F0→5D0 transition is about 0. 2 nm. It was foundthat the two sites were nonequivalent optical ones at room temperature. Crystal lattice constants a,b, c, and β of Eu3+: Y2SiO5 werealso measured by the X-ray diffraction method. The results show thatthe lattice constants a, b, and cof the crystal doped Eu3+ ions isvery close to those of the Y2SiO5crystal undoped Eu3+ ions.展开更多
By using an Ar^+ ion laser, a tunable Rh6G dye laser(linewidth: 0.5 cm^-1) pumped by the second harmonic of a YAG:Nd laser and an 899-21 dye laser as light sources and using a monochromator, a phase-locking ampli...By using an Ar^+ ion laser, a tunable Rh6G dye laser(linewidth: 0.5 cm^-1) pumped by the second harmonic of a YAG:Nd laser and an 899-21 dye laser as light sources and using a monochromator, a phase-locking amplifier and a computer as the data detecting system, the spectra and spectral hole burning of Eu^3+:Y2SiO5 crystal were researched in this paper.Photoluminescence excitation spectrum and site selective fluorescence spectrum were detected at room temperature and 77 K. Hole burning experiments were reached at 16 K. A spectral hole with hole width of about 80 MHz were detected and it could be kept for 10 h.展开更多
A series of long afterglow phosphors, Eu2+, Dy3+, with different iron content were prepared by nano-coating process. The resulted precursors were characterized by Transmission Electron Microscope (TEM), which suggeste...A series of long afterglow phosphors, Eu2+, Dy3+, with different iron content were prepared by nano-coating process. The resulted precursors were characterized by Transmission Electron Microscope (TEM), which suggested that the precursor particles had nanometer size distribution. The optical quenching of iron impurity on the phosphor powders were investigated by X-Ray powder Diffraction (XRD) and photoluminescence methods. The XRD indicates that a pure monoclinic SrAl2O4∶Eu2+, Dy3+ was formed at 1200 ℃ and iron impurity up to 296.36×10-4% had no effect on the SrAl2O4∶Eu2+, Dy3+ phase structure. However, the luminescence intensity were strongly dependent on the trace iron impurity, which might be explained that iron displace the aluminium and form Fe-O bond, which competed energy with Eu2+ and transfer red them to infrared sites.展开更多
By using an improved Bridgman method,0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/y mol%Eu^(3+)(y=0,0.4,0.6,0.8)doped Na_(5)Y_(9)F_(32)single crystals were prepared.The x-ray diffraction,excitation spectra,emission spectra and flu...By using an improved Bridgman method,0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/y mol%Eu^(3+)(y=0,0.4,0.6,0.8)doped Na_(5)Y_(9)F_(32)single crystals were prepared.The x-ray diffraction,excitation spectra,emission spectra and fluorescence decay curves were used to explore the crystal structure and optical performance of the obtained samples.When excited by 362 nm light,the cool white emission was realized by Na_(5)Y_(9)F_(32)single crystal triply-doped with 0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/0.8 mol%Eu^(3+),in which the Commission Internationale de l’Eclairage(CIE)chromaticity coordinate was(0.2995,0.3298)and the correlated color temperature(CCT)was 6586 K.The integrated normalized emission intensity of the tridoped single crystal at 448 K could keep 62%of that at 298 K.The internal quantum yield(QY)was calculated to be~15.16%by integrating spheres.These results suggested that the single crystals tri-doped with Tm^(3+),Tb^(3+)and Eu^(3+)ions have a promising potential application for white light-emitting diodes(w-LEDs).展开更多
Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X...Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.展开更多
A series of Zr-doped CaTiO3 powders were prepared with the mild co-precipitation method and calcined at 850℃ for 3 h. The as-prepared Zr-doped CaTiO3 samples were characterized by scanning electron microscopy (SEM)...A series of Zr-doped CaTiO3 powders were prepared with the mild co-precipitation method and calcined at 850℃ for 3 h. The as-prepared Zr-doped CaTiO3 samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectra (XPS). XRD result revealed the presence of single perovskite phase of CaTiO3. UV-Vis diffusive reflection spectra of Zr-doped CaTiO3 indicated that the absorbance obviously increased in the visible light irradiation. XPS analysis showed that two types of oxygen existed on the photocatalyst surface, including lattice oxygen and absorbed oxygen. Their photocatalytic activity in the case of the degradation of methyl orange in water and photoelectrochemical activity were also tested. The 5%Zr-doped (mole fraction) CaTiO3 sample showed the highest photocatalytic activity. The enhanced photocatalytic activity was ascribed to the change of the lattice structure, existence of oxygen vacancies and increase of the photogenerated charge separation efficiency.展开更多
文摘Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.
基金supported by the National Natural Science Foundation of China (No. 10476024) the Science and Technology Bureau of Sichuan Province, China (No. 2006J13-059)
文摘A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-like in the length range of 5.0-10.0 μm. The results of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy indicate that pure aragonite CaCO3:Eu^3+ is prepared using microwave irradiation and the Eu^3+ ion as a luminescence center inhabits the site of Ca^2+. The photoluminescence excitation (PLE) spectrum shows that the strong broad band at around 270 nm and weak sharp lines in 300-550 nm are assigned to the charge transfer band of Eu^3+-O^2- and intra-configurational 4f-4f transitions of Eu^3+, respectively. The photoluminescence (PL) spectrum implies that the red luminescence can be attributed to the transitions from the ^5D0 excited level to the ^7FJ (J = 0, 1, 2, 3, 4) levels of Eu^3+ ions with the mainly electric dipole transition ^5D0 → ^7F2 (614 and 620 nm), and the Eu^3+ ions prefer to occupy the low symmetric site in the crystal lattice.
文摘The structure of the low-temperature 4f^N→4f^N-15d excitation spectra of Eu^3+ and Tb^3+ doped in crystals LiYF4, YPO4 and CaF2 measured by van Pieterson et al. in 2002 was analyzed and assigned based on the simple model proposed by Duan and co-workers in the last few years. Some complemental discussion on effects of J-mixing on the f-d transition intensities for Eu^3+ due to the f-electron crystal-field interaction Hcf(f), which was ignored in the simple mod- el, was presented. Some previously unexplained peaks for Tb^3 + were interpreted to be spin-forbidden transitions to higher 5d crystal-field levels, or assigned to be f→d excitations with the core 4f7 excited from ^8S to ^6P, ^6I and ^6D, respectively. It is shown that the main structure of 4f-Sd excitation spectra of Eu^3+ and Tb^3+ can be well interpreted with the simple model.
文摘Under different annealing temperatures, Eu 3+ doped SiO 2 gel and glass were prepared by sol gel method, and the structure and luminescent properties were studied with excitation spectra, emission spectra, IR and DTA TG. The results show that the fluorescent intensity tends to get stable when concentration of Eu 3+ doped is above 1 86 % (mass fraction) most water absorbed by the gel was removed at 300 ℃, and that the emission spectrum of Eu 3+ , with peaks at 614, 588, 577 nm, is due to 5D 0→ 7F 2, 5D 0→ 7F 1, 5D 0→ 7F 0 transitions, and the excitation peaks at 318, 362, 380, 393, 412 and 462 nm were observed. These results illustrate that the temperature range of 300~500 ℃ is critical for the structure conversion from gel to glass, and the fluorescence is strongly quenched by water.
基金the National Defense Foundation Research Item of China(No.K 1203061109)
文摘The photoluminescence (PL) characteristics of Eu^3+ and Li^+ co-doped ZnO PL materials against heat-treatment temperature were discussed. The PL xerogel and powder samples were prepared by solgel process. The emission spectra of all samples showed two broad bands peaking at 590 nm and 620 nm under UV-Vis excitation. But the relative intensity of red PL (620 nm) was much greater than that of green PL (590 nm) of the same sample, that s to say, the red color was the main luminescence. With heat-treatment temperature increase, the two kinds of colors PL intensity decreased, and both the red and green PL intensity of the xerogel samples was much greater than those of powder samples respectively. The XRD patterns revealed that Eu^3+ ions were successfully incorporated in ZnO crystals in xerogel samples. When heat-treatment temperature reached 350 ℃, the Eu^3+ began to separate out of the ZnO crystals and Eu2O3 crystals came into being. When the powder sample was subjected to UV-Vis excitation, the energy transfered from the host ZnO emission to Eu^3+ became weaker than the xerogel sample.
文摘YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.
基金supported by the Science Program of the Education Office, Jiangxi Province (GJJ08345)the Young Foundation of Jiangxi Univer-sity of Finance and Economy
文摘Single phase of BaGd0.9-xMxEu0.1B9O16(M=Al or Sc, 0≤x≤0.3) powder was prepared by the solid-state reaction and its photoluminescence(PL) properties were investigated under ultraviolet(UV) and vacuum ultraviolet(VUV) excitation.Monitored with 613 nm emission, the excitation spectra of BaGd0.9-xMxEu0.1B9O16 consisted of three broad bands peaking at about 242, 208, and 142 nm, respectively.The one at about 242 nm originated from the charge transfer band(CTB) of O2-→Eu^3+.The other two were assigned to the absorption of the host, which was overlapped with absorptions among borate groups, f→d transition of RE3+(RE=Gd, Eu), and the charge transfer transition of O2-→Gd^3+.The maximum emission peak was observed at about 613 nm in the emission spectra of BaGd0.9-xMxEu0.1B9O16 under both 254 and 147 nm excitation, which originated from the electric dipole 5D0→7F2 transition of Eu^3+.When excited with 254 nm, the integral emission intensity of Eu^3+ increased after Al^3+ or Sc^3+ substituting Gd^3+ partly in BaGd0.9Eu0.1B9O16.Under 147 nm excitation, the integral emission intensity of Eu^3+ decreased after some Gd^3+ was replaced by Sc^3+, but increased after adding appropriate Al^3+ into BaGd0.9Eu0.1B9O16.
文摘Al-doped and B, Al-codoped silica xerogel was fabricated by sol-gel process. The influence of B ions and annealing temperature on luminescent properties of phosphors were studied by using fluorescence spectrum, X-ray diffraction, DSC, TG/DTG analysis and IR spectrum. The heat treatment has a large effect on the luminescent properties. Under 248 nm excitation, the emission spectrum of samples heated shows characteristic emission peaks of Eu^3+ ions are, which are due to the transitions of ^5D0→^7FJ(J = 0, 1, 2, 3, 4) of Eu^3+ , respectively. The transition of ^5D0→^7F1 is split into two peaks.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50902042)the Natural Science Foundation of Hebei Province, China(Grant Nos. E2009000209 and E2010000283)+1 种基金the Education Bureau Foundation of Hebei Province, China (Grant No. 2009313)the Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, China (Grant No. 2010LOI12)
文摘A series of SrIn2 O4 :Eu^3+ phosphors are synthesized by a high temperature solid-state method, and their luminescent properties are investigated. They can be excited by 395-nm radiation, and produce red emission (619 nm); however, they have a low absorption of near-ultraviolet light with the wavelength of 400nm–405 nm. When co-doped with A^+ (A=Li, Na, K), the emission intensity of SrIn2O4 :Eu^3+ is significantly enhanced, but its emission and excitation spectral profile is unchanged. With co-doping Sm^3+ , not only is the emission intensity of SrIn2 O4 :Eu^3+ enhanced, but also the absorption is broadened and strengthened in the range of 400 nm–405nm. The effect of Sm^3+ -doped content on the emission intensity of SrIn2O4 :Eu^3+ , Sm^3+ is investigated, and the optimal Sm^3+ content is 0.02 mol.
文摘The Ce^3+ and Eu^2+ ions codoped calcium zinc chlorosilicate Ca_8Zn(SiO_4)_4Cl_2 phosphors have been synthesized for the first time. The diffuse reflection, excitation and emission spectra of Ca_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ have been measured at room temperature. The luminescence sensitizaiton of Eu^2+ by Ce^3+ inCa_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ has been expounded under the excitation of ultraviolet light and the efficient nonradiative energy transfer from Ce^3+ to Eu^2+ in this system is confirmed.
文摘By using a whitelight lamp, an Ar+ ion laser whosewavelength was tuned to 457. 9 nmand a tunable Rh 6G dye laser(linewidth: 0. 5 cm-1) pumped bythe second harmonic of a Nd: YAGlaser as light sources and using amonochromator, a phase-lockingamplifier and a computer as the data detecting system, the transmission spectrum, fluorescence spectra, excitation spectrum and siteselective fluorescence spectra ofthe Eu3+: Y2SiO5 crystal were observed. More than thirty out of thetotal fifty spectral lines were observed for 5D0→7F0,1,2,3,4 transitions. The Eu3+ ions occupy twokinds of the Y3+ sites with the lowsymmetry in this crystal. The difference of the wavelengths of thetwo Eu3+ sites for 7F0→5D0 transition is about 0. 2 nm. It was foundthat the two sites were nonequivalent optical ones at room temperature. Crystal lattice constants a,b, c, and β of Eu3+: Y2SiO5 werealso measured by the X-ray diffraction method. The results show thatthe lattice constants a, b, and cof the crystal doped Eu3+ ions isvery close to those of the Y2SiO5crystal undoped Eu3+ ions.
文摘By using an Ar^+ ion laser, a tunable Rh6G dye laser(linewidth: 0.5 cm^-1) pumped by the second harmonic of a YAG:Nd laser and an 899-21 dye laser as light sources and using a monochromator, a phase-locking amplifier and a computer as the data detecting system, the spectra and spectral hole burning of Eu^3+:Y2SiO5 crystal were researched in this paper.Photoluminescence excitation spectrum and site selective fluorescence spectrum were detected at room temperature and 77 K. Hole burning experiments were reached at 16 K. A spectral hole with hole width of about 80 MHz were detected and it could be kept for 10 h.
基金the National Natural Science Foundation of China (20376009)
文摘A series of long afterglow phosphors, Eu2+, Dy3+, with different iron content were prepared by nano-coating process. The resulted precursors were characterized by Transmission Electron Microscope (TEM), which suggested that the precursor particles had nanometer size distribution. The optical quenching of iron impurity on the phosphor powders were investigated by X-Ray powder Diffraction (XRD) and photoluminescence methods. The XRD indicates that a pure monoclinic SrAl2O4∶Eu2+, Dy3+ was formed at 1200 ℃ and iron impurity up to 296.36×10-4% had no effect on the SrAl2O4∶Eu2+, Dy3+ phase structure. However, the luminescence intensity were strongly dependent on the trace iron impurity, which might be explained that iron displace the aluminium and form Fe-O bond, which competed energy with Eu2+ and transfer red them to infrared sites.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275133)the Natural Science Foundation of Zhejiang Province of China(Grant No.LY22E020002)+1 种基金the Natural Science Foundation of Ningbo(Grant Nos.2021J077 and 202003N4099)K.C.Wong Magna Fund in Ningbo University
文摘By using an improved Bridgman method,0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/y mol%Eu^(3+)(y=0,0.4,0.6,0.8)doped Na_(5)Y_(9)F_(32)single crystals were prepared.The x-ray diffraction,excitation spectra,emission spectra and fluorescence decay curves were used to explore the crystal structure and optical performance of the obtained samples.When excited by 362 nm light,the cool white emission was realized by Na_(5)Y_(9)F_(32)single crystal triply-doped with 0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/0.8 mol%Eu^(3+),in which the Commission Internationale de l’Eclairage(CIE)chromaticity coordinate was(0.2995,0.3298)and the correlated color temperature(CCT)was 6586 K.The integrated normalized emission intensity of the tridoped single crystal at 448 K could keep 62%of that at 298 K.The internal quantum yield(QY)was calculated to be~15.16%by integrating spheres.These results suggested that the single crystals tri-doped with Tm^(3+),Tb^(3+)and Eu^(3+)ions have a promising potential application for white light-emitting diodes(w-LEDs).
基金Project (2009AA035002) supported by the High-tech Research and Development Program of China
文摘Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.
基金Projects(5070202051402100+5 种基金81171461)supported by the National Natural Science Foundation of ChinaProject(11JJ4013)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013GK3155)supported by Science&Technology Project of Hunan Province,ChinaProject supported by the Youth 1000 Talent Program of ChinaProject supported by the Interdisciplinary Research Program of Hunan University,ChinaProject supported by the Young Teacher Promotion Fund by Hunan University,China
文摘A series of Zr-doped CaTiO3 powders were prepared with the mild co-precipitation method and calcined at 850℃ for 3 h. The as-prepared Zr-doped CaTiO3 samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectra (XPS). XRD result revealed the presence of single perovskite phase of CaTiO3. UV-Vis diffusive reflection spectra of Zr-doped CaTiO3 indicated that the absorbance obviously increased in the visible light irradiation. XPS analysis showed that two types of oxygen existed on the photocatalyst surface, including lattice oxygen and absorbed oxygen. Their photocatalytic activity in the case of the degradation of methyl orange in water and photoelectrochemical activity were also tested. The 5%Zr-doped (mole fraction) CaTiO3 sample showed the highest photocatalytic activity. The enhanced photocatalytic activity was ascribed to the change of the lattice structure, existence of oxygen vacancies and increase of the photogenerated charge separation efficiency.