期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis
1
作者 焦宝臣 张晓丹 +3 位作者 魏长春 孙建 倪牮 赵颖 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期407-415,共9页
Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of ace... Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. 展开更多
关键词 indium doped zinc oxide thin film ultrasonic spray pyrolysis double-layer structure solar cell
下载PDF
Preparation and Characterization of Indium Doped Tin Oxide (ITO) via a Solvothermal Method
2
作者 Anh Khuong Quoc Nguyen Van Thi Thanh Ho 《Journal of Environmental Science and Engineering(B)》 2016年第8期379-384,共6页
Tin-doped Indium Oxide (ITO) has been successfully prepared via solvothermal method with a mixture of Indium(Ill) acetylacetonate and Tin(IV) bis(acetylacetonate)dichioride in oleyamine solvent under the condi... Tin-doped Indium Oxide (ITO) has been successfully prepared via solvothermal method with a mixture of Indium(Ill) acetylacetonate and Tin(IV) bis(acetylacetonate)dichioride in oleyamine solvent under the condition of the different reaction time from 12 h to 48 h for the first time. The morphology, phase composition and particle size of the ITO powder were characterized by TEM and XRD. Two significant properties required for ITO samples to become noncarbon support for Pt in PEMFCs including specific surface area and electrical conductivity were studied. 展开更多
关键词 ITO indium doped tin oxide SOLVOTHERMAL CONDUCTIVITY NANOPARTICLES
下载PDF
Photoanode Activity of ZnO Nanotube Based Dye-Sensitized Solar Cells 被引量:4
3
作者 R. Ranjusha P. Lekha +2 位作者 K.R.V. Subramanian V. Nair Shantikumar A. Balakrishnan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第11期961-966,共6页
Vertical ZnO nanotube (ZNT) arrays were synthesized onto an indium doped tin oxide (ITO) glass substrate by a simple electrochemical deposition technique followed by a selective etching process. Scanning electron ... Vertical ZnO nanotube (ZNT) arrays were synthesized onto an indium doped tin oxide (ITO) glass substrate by a simple electrochemical deposition technique followed by a selective etching process. Scanning electron microscopy (SEM) showed formation of well-faceted hexagonal ZNT arrays spreading uniformly over a large area. X-ray diffraction (XRD) of ZNT layer showed substantially higher intensity for the (0002) diffraction peak, indicating that the ZnO crystallites were well aligned with their c-axis. Profilometer measurements of the ZNT layer showed an average thickness of -7 μm. Diameter size distribution (DSD) analysis showed that ZNTs exhibited a narrow diameter size distribution in the range of 65-120 nm and centered at -75 nm. The photoluminescence (PL) spectrum measurement showed violet and blue luminescence peaks that were centered at 410 and 480 nm, respectively, indicating the presence of internal defects. Ultra-violet (UV) spectroscopy showed major absorbance peak at ,-348 nm, exhibiting an increase in energy gap value of 3.4 eV. By employing the formed ZNTs as the photo-anode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.01% was achieved with a fill factor of 54%. Quantum efficiency studies showed the maximum of incident photon-to-electron conversion efficiency in a visible region located at 590-550 nm range. 展开更多
关键词 ZnO nanotubes indium doped tin oxide (ITO) glass Photoluminescence spectra Electrochemical deposition Quantum efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部