期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The modulation effect of substrate doping on multi-node charge collection and single-event transient propagation in 90-nm bulk complementary metal-oxide semiconductor technology 被引量:2
1
作者 秦军瑞 陈书明 +3 位作者 刘必慰 刘征 梁斌 杜延康 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期517-524,共8页
Variation of substrate background doping will affect the charge collection of active and passive MOSFETs in complementary metal-oxide semiconductor (CMOS) technologies, which are significant for charge sharing, thus... Variation of substrate background doping will affect the charge collection of active and passive MOSFETs in complementary metal-oxide semiconductor (CMOS) technologies, which are significant for charge sharing, thus affecting the propagated single event transient pulsewidths in circuits. The trends of charge collected by the drain of a positive channel metal-oxide semiconductor (PMOS) and an N metal-oxide semiconductor (NMOS) are opposite as the substrate doping increases. The PMOS source will inject carriers after strike and the amount of charge injected will irlcrease as the substrate doping increases, whereas the source of the NMOS will mainly collect carriers and the source of the NMOS can also inject electrons when the substrate doping is light enough. Additionally, it indicates that substrate doping mainly affects the bipolar amplification component of a single-event transient current, and has little effect on the drift and diffusion. The change in substrate doping has a much greater effect on PMOS than on NMOS. 展开更多
关键词 substrate doping charge collection single event transient propagation bipolar amplification
下载PDF
Preparation and Characterization of Transparent Conductive Zinc Doped Tin Oxide Thin Films Prepared by Radio-frequency Magnetron Sputtering 被引量:1
2
作者 赵江 赵修建 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期388-392,共5页
High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic targe... High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic target.The effect of substrate temperature on the structural,electrical and optical performances of ZTO films has been studied.X-ray diffraction (XRD) results show that ZTO films possess tetragonal rutile structure with the preferred orientation of (101).The surface morphology and roughness of the films was investigated by the atomic force microscope (AFM).The electrical characteristic (including carrier concentration,Hall mobility and resistivity) and optical transmittance were studied by the Hall tester and UV- VIS,respectively.The highest carrier concentration of -1.144×1020 cm-3 and the Hall mobility of 7.018 cm2(V ·sec)-1 for the film with an average transmittance of about 80.0% in the visible region and the lowest resistivity of 1.116×10-2 Ω·cm were obtained when the ZTO films deposited at 250 oC. 展开更多
关键词 radio-frequency (RF) magnetron sputtering transparent conducting film zinc doped tin oxide (ZTO) substrate temperature
下载PDF
Effect of substrate doping on threshold voltages of buried channel pMOSFET based on strained-SiGe technology
3
作者 王斌 张鹤鸣 +3 位作者 胡辉勇 张玉明 周春宇 李妤晨 《Journal of Central South University》 SCIE EI CAS 2014年第6期2292-2297,共6页
The effect of substrate doping on the threshold voltages of buried channel pMOSFET based on strained-SiGe technology was studied.By physically deriving the models of the threshold voltages,it is found that the layer w... The effect of substrate doping on the threshold voltages of buried channel pMOSFET based on strained-SiGe technology was studied.By physically deriving the models of the threshold voltages,it is found that the layer which inversely occurs first is substrate doping dependent,giving explanation for the variation of plateau observed in the C-V characteristics of this device,as the doping concentration increases.The threshold voltages obtained from the proposed model are-1.2805 V for buried channel and-2.9358 V for surface channel at a lightly doping case,and-3.41 V for surface channel at a heavily doping case,which agrees well with the experimental results.Also,the variations of the threshold voltages with several device parameters are discussed,which provides valuable reference to the designers of strained-SiGe devices. 展开更多
关键词 buried pMOSFET strained SiGe plateau threshold voltage substrate doping Ge fraction
下载PDF
Photocatalytic properties of P25-doped TiO_2 composite film synthesized via sol–gel method on cement substrate 被引量:3
4
作者 Xiang Guo Lei Rao +4 位作者 Peifang Wang Chao Wang Yanhui Ao Tao Jiang Wanzhong Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期71-80,共10页
TiO2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface w... TiO2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO2 composite film on a cement substrate via a sol–gel method. In this case, Rhodamine B(Rh B)was employed as the target organic pollutant. The self-generated TiO2 film and the P25-TiO2 composite film were characterized by X-ray diffraction(XRD), N2 adsorption/desorption measurements, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and diffuse reflectance spectroscopy(DRS). The photodegradation efficiencies of the two films were studied by Rh B removal in water under UV(ultraviolet) irradiation. Over 4 day exposure, the P25-TiO2 composite film exhibited higher photocatalytic performance than the self-generated TiO2 film. The photodegradation rate indicated that the efficiency of the P25-TiO2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. 展开更多
关键词 P25-TiO2composite film Doping Photocatalysis Sol–gel method Cement substrate Rhodamine B
原文传递
Uncovering the magnetic response of open-shell graphene nanostructures on metallic surfaces at different doping levels
5
作者 Zengfu Ou Jun Wang +6 位作者 Jihai Zhang Yukang Ding Shenwei Chen Wenya Zhai Jingcheng Li Dingyong Zhong Donghui Guo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第2期142-148,共7页
Open-shell graphene nanostructures(GNs)are promising candidates for future spintronics and quantum technologies.Recent progress based on on-surface synthetic approach has successfully created such GNs on metallic surf... Open-shell graphene nanostructures(GNs)are promising candidates for future spintronics and quantum technologies.Recent progress based on on-surface synthetic approach has successfully created such GNs on metallic surfaces.Meanwhile,the doping effect of metallic surfaces is inevitably present and can significantly tune their electronic and magnetic properties.Here,we investigate the zigzag end states of open-shell 7-armchair graphene nanoribbons(7-AGNRs)on Au(111),Au(100)and Ag(111)surfaces.Combined with the manipulation of a scanning tunneling microscope,we demonstrate that the end states can be tuned from empty states to singly occupied states and to doubly occupied states by substrate doping.Furthermore,the singly occupied states can be finely tuned,with the occupancy number of the states and related magnetic behaviors uncovered by experiments at different temperatures and magnetic fields.Our results provide a comprehensive study of the magnetic response of open-shell GNs on metallic surfaces at different doping levels. 展开更多
关键词 open-shell graphene nanostructures magnetic response metallic substrate doping Kondo resonance scanning tunneling microscopy/spectroscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部