期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Doping Strategy in Nickel-Rich Layered Oxide Cathode for Lithium-Ion Battery 被引量:1
1
作者 Jiayi Wang Xincheng Lei +4 位作者 Shengnan Guo Lin Gu Xin Wang Aiping Yu Dong Su 《Renewables》 2023年第3期316-340,共25页
Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer ... Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer from irreversible structural degradation,fast capacity attenuation as well as seriously reduced safety in their practical applications.Doping strategies with different elements have been employed to address the above issues.In this review,we summarize the research advances of the elemental doping in a Ni-rich layered oxide cathode.The experimental methods and dopant selection rules are briefly introduced.Then we discuss here the effects of the elemental doping from the aspects of the crystal lattice,electronic structure,nanomorphology,and surface stability.In addition,this review surveys the first-principles calculation and advanced structural characterization techniques,which have played important roles in elucidating the structure-performance correlations.Finally,perspectives regarding the future of doping strategy are given. 展开更多
关键词 lithium-ion battery layered oxide cathode doping strategy advanced characterization techniques
原文传递
Reducing structural degradation of high-voltage single-crystal Ni-rich cathode through in situ doping strategy
2
作者 Xin-Ming Fan Zhi Zhang +6 位作者 Gao-Qiang Mao Ying-Jie Tong Ke-Bo Lin Hui Tong Wei-Feng Wei Qing-Hua Tian Xue-Yi Guo 《Rare Metals》 SCIE EI CAS CSCD 2023年第9期2993-3003,共11页
Polycrystalline Ni-rich layered oxide (Li Ni_(x)Co_(y)Mn_zO_(2)(NCM),x>0.8) cathode material with high specific capacity and low cost is considered as one of the most promising candidate materials for lithium-ion b... Polycrystalline Ni-rich layered oxide (Li Ni_(x)Co_(y)Mn_zO_(2)(NCM),x>0.8) cathode material with high specific capacity and low cost is considered as one of the most promising candidate materials for lithium-ion batteries (LIBs).However,it suffers from severe structural and capacity degradation during practical cycling,especially under harsh operation condition(ultrahigh cutoff voltage and elevated temperature,etc.).One promising approach to mitigate these issues is to develop a single-crystal Ni-rich NCM cathode,which could enhance structural integrity and improve capacity retention,due to its robust and stable micro-sized primary particles.However,the improved cyclic stability comes at the expense of reversible capacity and rate capability,owing to the relatively low Li^(+) diffusion efficiency for its micron-sized primary particles.Moreover,the structural degradation and exacerbation of interfacial reactions for the Ni-rich NCM cathode under highvoltage (≥4.5 V) would quickly trigger the poor electrochemical performance,limiting its practical applications.Herein,Li Ni_(0.827)Co_(0.11)Zr_(0.003)Mn_(0.06)O_(2)(Zr@SC-N_(83)) cathode material was successfully synthesized via the in situ doping strategy.It could not only effectively maintain the reversibility of phase transition between H2 and H3 after long-term cycling at high voltage (4.6 V),but also enhance lithium-ion diffusion,thus improving the cycling performance and good rate performance for the Zr@SC-N_(83)cathode.As a result,0.3 wt%Zrdoping cathode delivers an initial discharging capacity of 200.1 m Ah·g^(-1)at 1.0C and at the high cutoff voltage of 4.6 V,exhibiting the satisfactory capacity retention of 85.5%after 100cycles.It provides an effective route toward low-cost and higher energy density for lithium-ion batteries with Ni-rich cathode. 展开更多
关键词 Single-crystal Ni-rich LiNi_(x)Co_(y)Mn_zO_(2)(NCM) In situ doping strategy High voltage Structural integrity Cycling stability
原文传递
Enhancing electrical conductivity of single-atom doped Co_(3)O_(4) nanosheet arrays at grain boundary by phosphor doping strategy for efficient water splitting 被引量:3
3
作者 Yaohang Gu Xuanyu Wang +5 位作者 Ateer Bao Liang Dong Xiaoyan Zhang Haijun Pan Wenquan Cui Xiwei Qi 《Nano Research》 SCIE EI CSCD 2022年第10期9511-9519,共9页
High electrical conductivity guarantees a rapid electron transfer and thus plays an important role in electrocatalysis.In particular,for the single atom catalysts(SACs),to facilitate interaction between the single ato... High electrical conductivity guarantees a rapid electron transfer and thus plays an important role in electrocatalysis.In particular,for the single atom catalysts(SACs),to facilitate interaction between the single atom and supports,precisely engineering the conductivity represents a promising strategy to design SACs with high electrochemical efficiency.Here we show rhodium(Rh)SAC anchored on Co_(3)O_(4) nanosheets arrays on nickel foam(NF),which is modified by a facile phosphorus(P-doped Rh SACCo_(3)O_(4)/NF),possessing an appropriate electronic structure and high conductivity for electrocatalytic reaction.With the introduction of P atom in the lattice,the electrocatalyst demonstrates outstanding alkaline oxygen evolution reaction(OER)activity with 50 mA·cm^(−2) under overpotential of 268 mV,6 times higher than that of Ir/C/NF.More interestingly,the P-doped Rh SAC-Co_(3)O_(4)/NF can get 50 mA·cm^(−2) at only 1.77 V for overall water splitting.Both electrical conductivity studies and density functional theory(DFT)calculations reveal that the high conductivity at grain boundary improves the charge transfer efficiency of the Rh catalytic center.Furthermore,other noble-metal(Ir,Pd,and Ru)doped Co_(3)O_(4) nanosheets arrays are prepared to exhibit the general efficacy of the phosphorus doping strategy. 展开更多
关键词 overall water splitting electrical conductivity single atom electrocatalyst phosphor doping strategy
原文传递
Influence of different Fe doping strategies on modulating active sites and oxygen reduction reaction performance of Fe, N-doped carbonaceous catalysts 被引量:1
4
作者 Yang Liu Suqiong He +2 位作者 Bing Huang Ziyan Kong Lunhui Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期511-520,I0013,共11页
Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity i... Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries. 展开更多
关键词 Mg-air battery Oxygen reduction reaction Single-atom Fe/N/C catalysts Fe doping strategies Zeolitic imidazole frameworks
下载PDF
Advances in doping strategies for sodium transition metal oxides cathodes:A review 被引量:1
5
作者 Zhijing ZHANG Haoze ZHANG +4 位作者 Yaopeng WU Wei YAN Jiujun ZHANG Yun ZHENG Lanting QIAN 《Frontiers in Energy》 SCIE EI CSCD 2024年第2期141-159,共19页
The electrochemistry of cathode materials for sodium-ion batteries differs significantly from lithium-ion batteries and offers distinct advantages.Overall,the progress of commercializing sodium-ion batteries is curren... The electrochemistry of cathode materials for sodium-ion batteries differs significantly from lithium-ion batteries and offers distinct advantages.Overall,the progress of commercializing sodium-ion batteries is currently impeded by the inherent inefficiencies exhibited by these cathode materials,which include insufficient conductivity,slow kinetics,and substantial volume changes throughout the process of intercalation and deintercalation cycles.Consequently,numerous methodologies have been utilized to tackle these challenges,encompassing structural modulation,surface modification,and elemental doping.This paper aims to highlight fundamental principles and strategies for the development of sodium transition metal oxide cathodes.Specifically,it emphasizes the role of various elemental doping techniques in initiating anionic redox reactions,improving cathode stability,and enhancing the operational voltage of these cathodes,aiming to provide readers with novel perspectives on the design of sodium metal oxide cathodes through the doping approach,as well as address the current obstacles that can be overcome/alleviated through these dopant strategies. 展开更多
关键词 sodium-ion batteries transition metal cathode doping strategy
原文传递
Improving the response of 2D COFs to the surface doping strategies through rational design of their chemical structure
6
作者 Xin Feng Xuefeng Liang +5 位作者 Xinxia Li Zhou Fang Weiqiang Wei Lisheng Zhang Yan He Huifang Li 《Science China Materials》 SCIE EI CAS CSCD 2024年第10期3272-3281,共10页
The chemical structure of covalent organic frameworks(COFs)plays a key role in their response to the surface doping strategy used for tuning their electronic character,but it is still not fully understood.To explore a... The chemical structure of covalent organic frameworks(COFs)plays a key role in their response to the surface doping strategy used for tuning their electronic character,but it is still not fully understood.To explore a rational design proposal for their chemical structure,the electronic properties of three n-doped typical COFs,including boroncontaining(COF-1),triazine-based(CTF),and C–C bondlinked(GCOF)COFs,were investigated theoretically in this work.As expected,the chemical doping effects are different for these COFs.The dispersion of the frontier bands,the nuclear-independent chemical shift(NICS)aromaticity index results,distribution of the electron localization function(ELF),and Hirshfeld charge population plots show that part of the transferred electron from dopants will be offset by the intralayer charge transfer of COFs.Thus,chemical doping effects are more significant if the electron distribution in the COFs is more localized.This means the response of COFs to the surface doping strategy should be dominated by the conjugation degree of their chemical structure.Our results prove that the intrinsic conjugation degree of COFs plays a key role in such doping functionalization strategies,which are expected to provide more useful information for the initial structure design of COF materials and facilitate their practical applications as active electronic transport materials in nanoscale devices. 展开更多
关键词 COF monolayers adsorption doping strategy energy level alignment conjugation degree density functional theory
原文传递
Boron-doped carbon dots:Doping strategies,performance effects,and applications 被引量:1
7
作者 Qiang Fu Shouhong Sun +2 位作者 Kangzhi Lu Ning Li Zhanhua Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期100-106,共7页
Due to their superior fluorescence,phosphorescence,and catalytic capabilities,carbon dots(CDs),an emerging class of fluorescent carbon nanomaterials,have a wide range of potential applications.The properties of CDs ha... Due to their superior fluorescence,phosphorescence,and catalytic capabilities,carbon dots(CDs),an emerging class of fluorescent carbon nanomaterials,have a wide range of potential applications.The properties of CDs have recently been controlled extensively by heteroatom doping.Boron atoms have been effectively doped into the structure of CDs due to their similar size to carbon atoms and excellent electron-absorbing ability to further improve the performance of CDs.In this review,we summarize the research progress of boron-doped CDs in recent years from the aspects of doping strategies,effects of boron doping on different performances of CDs and applications.Starting from the two aspects of single boron doping and boron and other atom co-doping,from different precursor materials to different synthesis methods,the doping strategies of boron-doped CDs are reviewed in detail.Then,the effects of boron doping on the fluorescence,phosphorescence and catalytic performance of CDs and applications of boron-doped CDs in optical sensors,information encryption and anti-counterfeiting are discussed.Finally,we further provide a prospect towards the future development of boron-doped CDs. 展开更多
关键词 Carbon dots BORON-DOPED Luminescent material doping strategies Performance effects
原文传递
Detection of Oxygen Based on Host-Guest Doped Room-Temperature Phosphorescence Material
8
作者 Zhang Wei Li Gengchen +6 位作者 Su Hao Dai Wenbo Sun Peng Shi Jianbing Tong Bina Cai Zhengxu Dong Yuping 《有机化学》 SCIE CAS CSCD 北大核心 2024年第8期2523-2529,共7页
Quantitative oxygen detection,especially at low concentrations,holds significant importance in the realms of biology,complex environments,and chemical process engineering.Due to the high sensitivity and rapid response... Quantitative oxygen detection,especially at low concentrations,holds significant importance in the realms of biology,complex environments,and chemical process engineering.Due to the high sensitivity and rapid response of the triplet excitons of phosphorescence to oxygen,pure organic room-temperature phosphorescence(RTP)materials have garnered widespread attention in recent years for oxygen detection.However,simultaneously achieving ultralong phosphorescence at room temperature and quantitative oxygen detection from pure organic host-guest doped materials poses challenges.The d ensely packed materials may decrease non-radiative decay to increase the phosphorescence,but are unsuitable for oxygen diffusion in oxygen detection.Herein,the oxygen sensitivity of host-guest doped RTP materials using 4-bromo-N,N-bis(4-(tertbutyl)phenyl)aniline(TPABuBr)as the host and 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione(NIBr)as the guest was developed.The doped material exhibits fluorescence-phosphorescence dual-emission behavior at room temperature.The tert-butyl groups in TPABuBr facilitate appropriate intermolecular spacing in the crystal state,enhancing oxygen permeability.Therefore,oxygen penetration can quench the phosphorescence emission.The observed linear relationship between the phosphorescence intensity of the doped material and the oxygen volume fraction conforms to the Stern-Volmer equation,suggesting its potential for quantitative analysis of oxygen concentration.The calculated limit of detection is 0.015%(φ),enabling the analysis of oxygen with a volume fraction of less than 2.5%(φ).Moreover,the doped materials demonstrate rapid response and excellent photostability,indicating their potential utility as oxygen sensors.This study elucidates the design and characteristics of NIBr/TPABuBr doped materials,highlighting their potential application in oxygen concentration detection and offering insights for the design of oxygen sensors. 展开更多
关键词 organic room-temperature phosphorescence host-guest doped strategy oxygen sensitive materials oxygen concentration detection
原文传递
Fe-Promoted Copper Oxide Thin-Film Catalysts for the Catalytic Reduction of N_(2)O in the Presence of Methane 被引量:1
9
作者 MUHAMMAD Waqas WU Lingnan +2 位作者 EI KASMI Achraf MUHAMMAD Ammar TIAN Zhenyu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期531-541,共11页
Thin-film catalysts are recently recognized as promising catalysts due to their reduced amount of materials and good catalytic activity,leading to low-cost and high-efficiency catalysts.A series of CuFeO_(x)thin-film ... Thin-film catalysts are recently recognized as promising catalysts due to their reduced amount of materials and good catalytic activity,leading to low-cost and high-efficiency catalysts.A series of CuFeO_(x)thin-film catalysts were prepared with different Fe contents using a one-step method as well as tested for the catalytic reduction of nitrous oxide(N_(2)O)in the presence of CH_(4)at a high GH SV of 185000 mL/(g·h).The increase of iron strongly affects the dispersion and leads to the creation of a less-active segregated Fe_(2)O_(3)phase,which was confirmed by XRD,EDX,and XPS outcomes.The results show that the synergistic properties between Cu and Fe,which affect the CuFeOxfilm catalysts in many aspects,such as the hollow-like texture,specific surface area,nano-crystallite size,the surface contents of Cu^(+),Fe^(3+),and oxygen species,the reductive strength and the strong active sites on the surface.Using DFT calculations,the adsorption and decomposition energy profiles of N_(2)O on the CuFeO_(2)(012)surface model were explored.The surface Fe-site and hollow-site are active for N_(2)O decomposition,and the decomposition energy barriers on the Fe-site and the hollow-site are 1.02 eV and 1.25 eV respectively at 0 K.The strategy adopted here to tailor the activity through low-doping Fe-oxide catalysts could establish a promising way to improve the catalytic reduction of N_(2)O with CH_(4). 展开更多
关键词 catalytic reduction thin-film catalysts doping strategy density functional theory calculations N_(2)O decomposition
原文传递
Halogen-based functionalized chemistry engineering for high-performance supercapacitors
10
作者 Wuquan Ye Hongfei Wang +4 位作者 Junling Shen Shahid Khan Yijun Zhong Jiqiang Ning Yong Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期114-126,共13页
Supercapacitors(SCs)are rated as the foremost efficient devices bridging the production and consumption of renewable energy.To address the ever-increasing energy requirements,it is indispensable to further develop hig... Supercapacitors(SCs)are rated as the foremost efficient devices bridging the production and consumption of renewable energy.To address the ever-increasing energy requirements,it is indispensable to further develop high-performance SCs with merits of high energy-density,acceptable price and long-term stability.This review highlights the recent advances on halogen-based functionalized chemistry engineering in the state-of-the-art electrode system for high-performance SCs,primarily referring to the doping and decoration strategies of F,Cl,Br and I elements.Due to the discrepancy of electronegativity and atomic radius,the functionalization of each halogen element endows the substrate materials with different physicochemical properties,including energy bandgap structure,porosity distribution and surface affinity.The principle of halogen embedment into host materials by precisely controlling ionic adsorption and electronic structure is presented.And,the vital perspectives on the future challenges of halogen functionalization are also discussed.This work aims to deepen the understanding of halogen-based functionalized strategies to motivate further research for the development of high-performance SCs,and it also provides a prospect for exploring new material modification methods for electrochemical energy storage. 展开更多
关键词 Halogen-based functionalized chemistry doping strategy Decoration strategy Electrode materials SUPERCAPACITORS
原文传递
Ingeniously designed Ni-Mo-S/ZnIn_(2)S_(4) composite for multi-photocatalytic reaction systems 被引量:3
11
作者 Jing Chen Yumei Tang +6 位作者 Shihao Wang Lingbin Xie Cheng Chang Xiaolei Cheng Mingming Liu Longlu Wang Lianhui Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1468-1474,共7页
Molybdenum disulfide (MoS_(2)) with low cost, high activity and high earth abundance has been found to be a promising catalyst for the hydrogen evolution reaction (HER), but its catalytic activity is considerably limi... Molybdenum disulfide (MoS_(2)) with low cost, high activity and high earth abundance has been found to be a promising catalyst for the hydrogen evolution reaction (HER), but its catalytic activity is considerably limited due to its inert basal planes. Here, through the combination of theory and experiment, we propose that doping Ni in MoS_(2) as catalyst can make it have excellent catalytic activity in different reaction systems. In the EY/TEOA system, the maximum hydrogen production rate of EY/Ni-Mo-S is 2.72 times higher than that of pure EY, which confirms the strong hydrogen evolution activity of Ni-Mo-S nanosheets as catalysts. In the lactic acid and Na_(2)S/Na_(2)SO_(3) systems, when Ni-Mo-S is used as co-catalyst to compound with ZnIn_(2)S_(4) (termed as Ni-Mo-S/ZnIn_(2)S_(4)), the maximum hydrogen evolution rates in the two systems are 5.28 and 2.33 times higher than those of pure ZnIn_(2)S_(4), respectively. The difference in HER enhancement is because different systems lead to different sources of protons, thus affecting hydrogen evolution activity. Theoretically, we further demonstrate that the Ni-Mo-S nanosheets have a narrower band gap than MoS_(2), which is conducive to the rapid transfer of charge carriers and thus result in multi-photocatalytic reaction systems with excellent activity. The proposed atomic doping strategy provides a simple and promising approach for the design of photocatalysts with high activity and stability in multi-reaction systems. 展开更多
关键词 Molybdenum disulfide(MoS_(2)) Ni-Mo-S nanosheets Multi-reaction systems Hydrogen evolution reaction(HER) Atomic doping strategy
原文传递
Rational design of Ce-doped CdS/N-rGO photocatalyst enhanced interfacial charges transfer for high effective degradation of tetracycline
12
作者 Huijie Wang Yang Wan +8 位作者 Binrong Li Jian Ye Jiahao Gan Jiejing Liu Xin Liu Xianghai Song Weiqiang Zhou Xin Li Pengwei Huo 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第6期137-148,共12页
The charge carrier separation efficiency and the adsorption capacity of the photocatalyst usually affect the degradation rate of antibiotics.Herein,Cerium-doped leaf-like CdS(Ce-CdS)modified with ultrathin N-doped rGO... The charge carrier separation efficiency and the adsorption capacity of the photocatalyst usually affect the degradation rate of antibiotics.Herein,Cerium-doped leaf-like CdS(Ce-CdS)modified with ultrathin N-doped rGO(N-rGO)composites were successfully constructed(Ce-CdS/N-rGO)to investigate the removal efficiency of tetracycline(TC).X-ray photoelectron spectroscopy(XPS)and photoelectrochemical results revealed that Ce ions doped in CdS acting as the electron capture sites facilitated the interfacial charge transfer.Theoretical calculation(DFT)results indicated that the interfacial effect between Ce-CdS and ultrathin N-rGO promoted the transfer of photogenerated electrons under the synergistic effect between the doping and interface modification strategy.The optimized Ce5-CdS/N-rGO20 composites had the maximum TC removal capability(94.5%)and maintained a stable cycling performance.In addition,the adsorption-driven photocatalytic degradation pathway of TC was studied through mass spectrometry(MS)and in-situ Fourier transform infrared spectroscopy(in-situ FTIR).This study will provide an effective strategy for the construction of efficient photocatalytic composites for wastewater treatment. 展开更多
关键词 Interfacial charges transfer Adsorption-driven photocatalytic degradation Synergistic effect doping strategy Leaf-like CdS
原文传递
Constructing globally consecutive 3D conductive network using P-doped biochar cotton fiber for superior performance of silicon-based anodes
13
作者 Jun Cao Jianhong Gao +6 位作者 Kun Wang Zhuoying Wu Xinxin Zhu Han Li Min Ling Chengdu Liang Jun Chen 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第6期181-191,共11页
The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by... The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by compositing silicon and carbon materials has been employed to tackle the above challenges,however,the exorbitant costs and the uncertainty of the conductive structure persist,leaving ample room for improvement.Herein,silicon nanoparticles were innovatively composited with eco-friendly biochar sourced from cotton to fabricate a 3D globally consecutive conductive network.The network serves a dual purpose:enhancing overall electrode conductivity and serving as a scaffold to maintain electrode integrity.The conductivity of the network was further augmented by introducing P-doping at the optimum doping temperature of 350℃.Unlike the local conductive sites formed by the mere mixing of silicon and conductive agents,the consecutive network can affirm the improvement of the conductivity at a macro level.Moreover,first-principle calculations further validated that the rapid diffusion of Li^(+)is attributed to the tailored electronic microstructure and charge rearrangement of the fiber.The prepared consecutive conductive Si@P-doped carbonized cotton fiber anode outperforms the inconsecutive Si@Graphite anode in both cycling performance(capacity retention of 1777.15 mAh g^(-1) vs.682.56 mAh g^(-1) after 150 cycles at 0.3 C)and rate performance(1244.24 mAh g^(-1) vs.370.28 mAh g^(-1) at 2.0 C).The findings of this study may open up new avenues for the development of globally interconnected conductive networks in Si-based anodes,thereby enabling the fabrication of high-performance LIBs. 展开更多
关键词 3D conductive network Biochar carbon-silicon anode Heteroatoms doping strategy DFT calculation Lithium-ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部