The properties of n-Ge epilayer deposited on Si substrate with in-situ doping technology in a cold-wall ultrahigh vacuum chemical vapor deposition(UHVCVD) system are investigated.The growth temperature of 500℃ is o...The properties of n-Ge epilayer deposited on Si substrate with in-situ doping technology in a cold-wall ultrahigh vacuum chemical vapor deposition(UHVCVD) system are investigated.The growth temperature of 500℃ is optimal for the n-Ge growth in our equipment with a phosphorus concentration of 1018cm-3.In the n-Ge epilayer,the depth profile of phosphorus concentration is box-shaped and the tensile strain of 0.12% confirmed by x-ray diffraction measurement is introduced which results in the red shift of the photoluminescence.The enhancements of photoluminescence intensity with the increase of the doping concentration are observed,which is consistent with the modeling of the spontaneous emission spectrum for direct transition of Ge.The results are of significance for guiding the growth of n-Ge epilayer with in-situ doping technology.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632103)the National Key Technology Support Program of China(Grant No.2015BAF24B01)+4 种基金the Natural Science Foundation of Fujian Province of China(Grant No.2016J05147)the Key Sci-Tech Research and Development Platform of Fujian Province,China(Grant No.2014H2002)the Provincial University Foundation of Fujian Province,China(Grant No.JK2013030)the Educational Youth Key Foundation of Fujian Province,China(Grant No.JA13210)the Scientific Research Fund of Fujian University of Technology,China(Grant No.GY-Z14073)
文摘The properties of n-Ge epilayer deposited on Si substrate with in-situ doping technology in a cold-wall ultrahigh vacuum chemical vapor deposition(UHVCVD) system are investigated.The growth temperature of 500℃ is optimal for the n-Ge growth in our equipment with a phosphorus concentration of 1018cm-3.In the n-Ge epilayer,the depth profile of phosphorus concentration is box-shaped and the tensile strain of 0.12% confirmed by x-ray diffraction measurement is introduced which results in the red shift of the photoluminescence.The enhancements of photoluminescence intensity with the increase of the doping concentration are observed,which is consistent with the modeling of the spontaneous emission spectrum for direct transition of Ge.The results are of significance for guiding the growth of n-Ge epilayer with in-situ doping technology.