To ensure the security of a digital image, a new self-adapting encryption algorithm based on the spatiotemporal chaos and ergodic matrix is proposed in this paper. First, the plain-image is divided into different bloc...To ensure the security of a digital image, a new self-adapting encryption algorithm based on the spatiotemporal chaos and ergodic matrix is proposed in this paper. First, the plain-image is divided into different blocks of the same size, and each block is sorted in ascending order to obtain the corresponding standard ergodic matrix. Then each block is encrypted by the spatiotemporal chaotic system and shuffled according to the standard ergodic matrix. Finally, all modules are rearranged to acquire the final encrypted image. In particular, the plain-image information is used in the initial conditions of the spatiotemporal chaos and the ergodic matrices, so different plain-images will be encrypted to obtain different cipherimages. Theoretical analysis and simulation results indicate that the performance and security of the proposed encryption scheme can encrypt the image effectively and resist various typical attacks.展开更多
Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was...Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.展开更多
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ...A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%.展开更多
Segmenting the touching objects in an image has been remaining as a hot subject due to the problematic complexities, and a vast number of algorithms designed to tackle this issue have come into being since a decade ag...Segmenting the touching objects in an image has been remaining as a hot subject due to the problematic complexities, and a vast number of algorithms designed to tackle this issue have come into being since a decade ago. In this paper, a new granule segmentation algorithm is developed using saddle point as the cutting point. The image is binarized and then sequentially eroded to form a gray-scale topographic counterpart, followed by using Hessian matrix computation to search for the saddle point. The segmentation is performed by cutting through the saddle point and along the maximal gradient path on the topographic surface. The results of the algorithm test on the given real images indicate certain superiorities in both the segmenting robustness and execution time to the referenced methods.展开更多
This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorizati...This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorization by total variation constraint and graph regularization.The main contributions of our work are the following.First,total variation is incorporated into NMF to control the diffusion speed.The purpose is to denoise in smooth regions and preserve features or details of the data in edge regions by using a diffusion coefficient based on gradient information.Second,we add graph regularization into NMF to reveal intrinsic geometry and structure information of features to enhance the discrimination power.Third,the multiplicative update rules and proof of convergence of the TV-GNMF algorithm are given.Experiments conducted on datasets show that the proposed TV-GNMF method outperforms other state-of-the-art algorithms.展开更多
A watermarking algorithm of binary images using adaptable matrix is presented. An adaptable matrix is designed to evaluate the smoothness and the connectivity of binary images. The watermark is embedded according to t...A watermarking algorithm of binary images using adaptable matrix is presented. An adaptable matrix is designed to evaluate the smoothness and the connectivity of binary images. The watermark is embedded according to the adaptable matrix in this algorithm. In the proposed watermarking algorithm, each image block implements a XOR operation with the binary adaptable matrix, which has the same size with the image block, and in order to embed the watermark data, a multiplication operation are also implemented with the weight matrix. The experimental results show that proposed scheme has a good performance.展开更多
In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic s...In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic schemes,they always find out the flippable pixels to minimize the embedding distortions.For this reason,the stego images generated by the previous schemes maintain visual quality and it is hard for steganalyzer to capture the embedding trace in spacial domain.However,the distortion maps can be calculated for cover and stego images and the difference between them is significant.In this paper,a novel binary image steganalytic scheme is proposed,which is based on distortion level co-occurrence matrix.The proposed scheme first generates the corresponding distortion maps for cover and stego images.Then the co-occurrence matrix is constructed on the distortion level maps to represent the features of cover and stego images.Finally,support vector machine,based on the gaussian kernel,is used to classify the features.Compared with the prior steganalytic methods,experimental results demonstrate that the proposed scheme can effectively detect stego images.展开更多
An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-freque...An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-frequency components,respectively,and finally an image is synthesized.Subjective-visual-quality of the image fusion result is compared with those of the image fusion methods based on NMF and the combination of wavelet /contourlet /nonsubsampled contourlet with NMF.The experimental results are evaluated quantitatively,and the running time is also contrasted.It is shown that the proposed image fusion method can gain larger information entropy,standard deviation and mean gradient,which means that it can better integrate featured information from all source images,avoid background noise and promote space clearness in the fusion image effectively.展开更多
In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for s...In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for supplying Ti source to prepare in-situ synthesized TiC/Cu composites.The results show that TiC nano-precipitates,having the similar particle sizes with the CPD,form at the grains interior and grain boundaries,and maintain a uniform distribution state.Compared with the matrix,0.3 wt%CPD/Cu composite displays the best strengthplastic compatibility,the ultimate tensile strength achieves 385 MPa accompanied with a corresponding elongation of 21%,owing to the dislocation hindrance caused by nano-carbide and excellent interface bonding between nano TiC and the Cu matrix.The density function theory calculation supports our experimental results by showing a tighter and stronger interface contact.This work presents a new approach for studying in-situ carbide precipitates.展开更多
In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomp...In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomposition algorithm based on standard deviation sampling. Because of retaining more image information, the reconstructed image quality is higher under the same compression ratio. At the same time, in order to further reduce the amount of image information lost during the sampling process of the CUR matrix decomposition algorithm, we propose the SVD-CUR algorithm. The experimental results verify that our algorithm can achieve high image compression efficiency, and also demonstrate the high precision and robustness of CUR matrix decomposition algorithm in dealing with low rank sparse matrix data.展开更多
The Hessian matrix has a wide range of applications in image processing,such as edge detection,feature point detection,etc.This paper proposes an image enhancement algorithm based on the Hessian matrix.First,the Hessi...The Hessian matrix has a wide range of applications in image processing,such as edge detection,feature point detection,etc.This paper proposes an image enhancement algorithm based on the Hessian matrix.First,the Hessian matrix is obtained by convolving the derivative of the Gaussian function.Then use the Hessian matrix to enhance the linear structure in the image.Experimental results show that the method proposed in this paper has strong robustness and accuracy.展开更多
A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is const...A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation.展开更多
A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of th...A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of the precursor Pb/S molar ratio, the Pb/NAC molar ratio, and the pH of original solution on optical properties is explored. Results show that aqueous PbS QDs with strong NIR fluorescence can be prepared and their photoluminescence emission peaks can be tuned from 895 nm to 970 nm. Studies indicate that such aqueous QDs have a potential application in biomedical imaging, especially in noninvasive in vivo fluorescence imaging. In addition, the resulting PbS QDs are further characterized by a transmission electron microscopy and X-ray diffraction analysis.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U0735004 and 60972133)the Natural Science Foundation of Guangdong Province,China(Grant No.05006593)+2 种基金the Project Team for Natural Science Foundation of Guangdong Province,China(Grant No.9351064101000003)Energy Technology Key Laboratory Project of Guangdong Province,China(Grant No.2008A060301002)the Fundamental Research Funds for the Central Universities,China(Grant No.X2dXD2116370)
文摘To ensure the security of a digital image, a new self-adapting encryption algorithm based on the spatiotemporal chaos and ergodic matrix is proposed in this paper. First, the plain-image is divided into different blocks of the same size, and each block is sorted in ascending order to obtain the corresponding standard ergodic matrix. Then each block is encrypted by the spatiotemporal chaotic system and shuffled according to the standard ergodic matrix. Finally, all modules are rearranged to acquire the final encrypted image. In particular, the plain-image information is used in the initial conditions of the spatiotemporal chaos and the ergodic matrices, so different plain-images will be encrypted to obtain different cipherimages. Theoretical analysis and simulation results indicate that the performance and security of the proposed encryption scheme can encrypt the image effectively and resist various typical attacks.
基金Project(52064032)supported by the National Natural Science Foundation of ChinaProjects(2019ZE001,202002AB080001)supported by the Yunnan Science and Technology Projects,ChinaProject(YNWR-QNBJ-2018-005)supported by the Yunnan Ten Thousand Talents Plan Young&Elite Talents,China。
文摘Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.
基金Projects(61172002,61001047,60671050)supported by the National Natural Science Foundation of ChinaProject(N100404010)supported by Fundamental Research Grant Scheme for the Central Universities,China
文摘A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%.
基金Ningbo Natural Science Foundation (No.2006A610016)Foundation of the Ministry of Education Ministry for Returned Overseas Students & Scholars (SRF for ROCS, SEM. No.2006699).
文摘Segmenting the touching objects in an image has been remaining as a hot subject due to the problematic complexities, and a vast number of algorithms designed to tackle this issue have come into being since a decade ago. In this paper, a new granule segmentation algorithm is developed using saddle point as the cutting point. The image is binarized and then sequentially eroded to form a gray-scale topographic counterpart, followed by using Hessian matrix computation to search for the saddle point. The segmentation is performed by cutting through the saddle point and along the maximal gradient path on the topographic surface. The results of the algorithm test on the given real images indicate certain superiorities in both the segmenting robustness and execution time to the referenced methods.
基金supported by the National Natural Science Foundation of China(61702251,41971424,61701191,U1605254)the Natural Science Basic Research Plan in Shaanxi Province of China(2018JM6030)+4 种基金the Key Technical Project of Fujian Province(2017H6015)the Science and Technology Project of Xiamen(3502Z20183032)the Doctor Scientific Research Starting Foundation of Northwest University(338050050)Youth Academic Talent Support Program of Northwest University(360051900151)the Natural Sciences and Engineering Research Council of Canada,Canada。
文摘This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorization by total variation constraint and graph regularization.The main contributions of our work are the following.First,total variation is incorporated into NMF to control the diffusion speed.The purpose is to denoise in smooth regions and preserve features or details of the data in edge regions by using a diffusion coefficient based on gradient information.Second,we add graph regularization into NMF to reveal intrinsic geometry and structure information of features to enhance the discrimination power.Third,the multiplicative update rules and proof of convergence of the TV-GNMF algorithm are given.Experiments conducted on datasets show that the proposed TV-GNMF method outperforms other state-of-the-art algorithms.
基金China Postdoctoral Science Foundation (20070420707)the Natural Science Foundation of Education Bureau of Hunan Province (2008A520003)
文摘A watermarking algorithm of binary images using adaptable matrix is presented. An adaptable matrix is designed to evaluate the smoothness and the connectivity of binary images. The watermark is embedded according to the adaptable matrix in this algorithm. In the proposed watermarking algorithm, each image block implements a XOR operation with the binary adaptable matrix, which has the same size with the image block, and in order to embed the watermark data, a multiplication operation are also implemented with the weight matrix. The experimental results show that proposed scheme has a good performance.
基金This work is supported by the National Natural Science Foundation of China(No.U1736118)the Natural Science Foundation of Guangdong(No.2016A030313350)+3 种基金the Special Funds for Science and Technology Development of Guangdong(No.2016KZ010103)the Key Project of Scientific Research Plan of Guangzhou(No.201804020068)the Fundamental Research Funds for the Central Universities(No.16lgjc83 and No.17lgjc45)the Science and Technology Planning Project of Guangdong Province(Grant No.2017A040405051).
文摘In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic schemes,they always find out the flippable pixels to minimize the embedding distortions.For this reason,the stego images generated by the previous schemes maintain visual quality and it is hard for steganalyzer to capture the embedding trace in spacial domain.However,the distortion maps can be calculated for cover and stego images and the difference between them is significant.In this paper,a novel binary image steganalytic scheme is proposed,which is based on distortion level co-occurrence matrix.The proposed scheme first generates the corresponding distortion maps for cover and stego images.Then the co-occurrence matrix is constructed on the distortion level maps to represent the features of cover and stego images.Finally,support vector machine,based on the gaussian kernel,is used to classify the features.Compared with the prior steganalytic methods,experimental results demonstrate that the proposed scheme can effectively detect stego images.
基金Supported by National Natural Science Foundation of China (No. 60872065)
文摘An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-frequency components,respectively,and finally an image is synthesized.Subjective-visual-quality of the image fusion result is compared with those of the image fusion methods based on NMF and the combination of wavelet /contourlet /nonsubsampled contourlet with NMF.The experimental results are evaluated quantitatively,and the running time is also contrasted.It is shown that the proposed image fusion method can gain larger information entropy,standard deviation and mean gradient,which means that it can better integrate featured information from all source images,avoid background noise and promote space clearness in the fusion image effectively.
基金supported by the Chinese National Science Foundation(Grant No.52174345,52064032)the Yunnan Science and Technology Projects(Grant No.202002AB080001)Science and Technology Major Project of Yunnan Province(Grant No.202202AG050004).
文摘In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for supplying Ti source to prepare in-situ synthesized TiC/Cu composites.The results show that TiC nano-precipitates,having the similar particle sizes with the CPD,form at the grains interior and grain boundaries,and maintain a uniform distribution state.Compared with the matrix,0.3 wt%CPD/Cu composite displays the best strengthplastic compatibility,the ultimate tensile strength achieves 385 MPa accompanied with a corresponding elongation of 21%,owing to the dislocation hindrance caused by nano-carbide and excellent interface bonding between nano TiC and the Cu matrix.The density function theory calculation supports our experimental results by showing a tighter and stronger interface contact.This work presents a new approach for studying in-situ carbide precipitates.
文摘In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomposition algorithm based on standard deviation sampling. Because of retaining more image information, the reconstructed image quality is higher under the same compression ratio. At the same time, in order to further reduce the amount of image information lost during the sampling process of the CUR matrix decomposition algorithm, we propose the SVD-CUR algorithm. The experimental results verify that our algorithm can achieve high image compression efficiency, and also demonstrate the high precision and robustness of CUR matrix decomposition algorithm in dealing with low rank sparse matrix data.
基金supported by the key scientific research projects of the Hunan Provincial Department of Education (No.19A099,20A102)the Educational Reform Project of the Hunan Provincial Department of Education (No.HNJG-2021-1121)+2 种基金the Hunan First Normal University Teaching Reform Project (No.XYS21J09)Shaoyang City Science and Technology Bureau Science and Technology Research Project (No.2020GX31)Shaoyang University Cooperation Project (No.2019HX115).
文摘The Hessian matrix has a wide range of applications in image processing,such as edge detection,feature point detection,etc.This paper proposes an image enhancement algorithm based on the Hessian matrix.First,the Hessian matrix is obtained by convolving the derivative of the Gaussian function.Then use the Hessian matrix to enhance the linear structure in the image.Experimental results show that the method proposed in this paper has strong robustness and accuracy.
基金The National Natural Science Foundation of China (60272045) the Key Project of Ministry of Education of China.
文摘A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation.
基金Supported by the National Natural Science Foundation of China (30800257,30700799)the Scien-tific Research Starting Foundation for Introduced Talented Persons of China Pharmaceutical University~~
文摘A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of the precursor Pb/S molar ratio, the Pb/NAC molar ratio, and the pH of original solution on optical properties is explored. Results show that aqueous PbS QDs with strong NIR fluorescence can be prepared and their photoluminescence emission peaks can be tuned from 895 nm to 970 nm. Studies indicate that such aqueous QDs have a potential application in biomedical imaging, especially in noninvasive in vivo fluorescence imaging. In addition, the resulting PbS QDs are further characterized by a transmission electron microscopy and X-ray diffraction analysis.