A novel fluorescent probe for H_2PO_4^- was designed and fabricated based on the carbon dots/Fe^(3+) composite. The carbon dots were synthesized by an established one-pot hydrothermal method and characterized by tr...A novel fluorescent probe for H_2PO_4^- was designed and fabricated based on the carbon dots/Fe^(3+) composite. The carbon dots were synthesized by an established one-pot hydrothermal method and characterized by transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer. The carbon dots/Fe^(3+) composite was obtained by aqueous mixing of carbon dots and FeCl_3, and its fluorescence property was characterized by fluorescence spectrophotometer. The fluorescence of carbon dots was quenched by aqueous Fe^(3+) cations, resulting in the low fluorescence intensity of the carbon dots/Fe^(3+) composite. On the other hand, H_2PO_4^- reduced the concentration of Fe^(3+) by chemical reaction and enhanced the fluorescence of the carbon dots/Fe^(3+) composite. The Stern-Volmer equation was introduced to describe the relation between the relative fluorescence intensity of the carbon dots/Fe^(3+) composite and the concentration of H_2PO_4^-, and a fine linearity(R2=0.997) was found in the range of H_2PO_4^- concentration of 0.4-12 m M.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.61575150 and 61377092)the Natural Science Foundation of Hubei Province(N0.2014CFB831)
文摘A novel fluorescent probe for H_2PO_4^- was designed and fabricated based on the carbon dots/Fe^(3+) composite. The carbon dots were synthesized by an established one-pot hydrothermal method and characterized by transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer. The carbon dots/Fe^(3+) composite was obtained by aqueous mixing of carbon dots and FeCl_3, and its fluorescence property was characterized by fluorescence spectrophotometer. The fluorescence of carbon dots was quenched by aqueous Fe^(3+) cations, resulting in the low fluorescence intensity of the carbon dots/Fe^(3+) composite. On the other hand, H_2PO_4^- reduced the concentration of Fe^(3+) by chemical reaction and enhanced the fluorescence of the carbon dots/Fe^(3+) composite. The Stern-Volmer equation was introduced to describe the relation between the relative fluorescence intensity of the carbon dots/Fe^(3+) composite and the concentration of H_2PO_4^-, and a fine linearity(R2=0.997) was found in the range of H_2PO_4^- concentration of 0.4-12 m M.