期刊文献+
共找到478篇文章
< 1 2 24 >
每页显示 20 50 100
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping 被引量:1
1
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
Defective Nickel-Iron Layered Double Hydroxide for Enhanced Photocatalytic NO Oxidation with Significant Alleviation of NO2 Production
2
作者 Xiaoyu Li Xiaoshu Lv +6 位作者 Jian Pan Peng Chen Huihui Peng Yan Jiang Haifeng Gong Guangming Jiang Li’an Hou 《Engineering》 SCIE EI CAS CSCD 2024年第5期276-284,共9页
Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to ... Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission. 展开更多
关键词 Vacancie layered double hydroxide NO+ PHOTOCATALYSIS NO removal
下载PDF
Effective multifunctional coatings with polyvinylpyrrolidone-enhanced ZIF-67 and zinc iron layered double hydroxide on microarc oxidation treated AZ31 magnesium alloy
3
作者 Mohammad Aadil Ananda Repycha Safira +2 位作者 Arash Fattah-alhosseini Mohammad Alkaseem Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3729-3743,共15页
Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electroc... Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks. 展开更多
关键词 Hybrid material POLYVINYLPYRROLIDONE Metal-organic framework layered double hydroxide Corrosion Photocatalytic degradation
下载PDF
Recent advances in flat sheet mixed matrix membrane modified by Mg-based layered double hydroxides(LDHs)for salt and organic compound separations
4
作者 Payam Veisi Arash Fattah-alhosseini Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2182-2200,共19页
Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particul... Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination. 展开更多
关键词 Mg-based layered double hydroxides(LDHs) Mixed matrix membrane Polymeric membrane Water and wastewater treatment Brackishwater desalination
下载PDF
Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As (Ⅲ) from aqueous solutions 被引量:2
5
作者 Najma Kamali Jahan B.Ghasemi +2 位作者 Ghodsi Mohammadi Ziarani Sahar Moradian Alireza Badiei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期374-380,共7页
In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a ... In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a well-known Hammer method. The obtained graphene oxide solution was sprayed in octanol solution under different temperatures and sprayed speed as influenced variables. The structure and physical characterization of synthesized spherical graphene oxide were determined by various techniques,including FT-IR, N_(2) adsorption–desorption, SEM, TEM, and EDX. In the next step, the hydrothermal method was applied to deposition LDH on the spherical graphene oxide. The synthesized spherical graphene modified by LDH was used to remove As(Ⅲ) as a toxic heavy metal ion. The effect of influenced variables including p H, contact time, amount of sorbent, and type eluent studied and the optimum values were as 8, 30, 50, and HCl(0.5 mol·L^(-1)), respectively. After optimization, the studied sorbent was shown a high adsorption capacity(149.3 mg·g^(-1)). The adsorption mechanism and kinetic models exhibited good agreement with the Langmuir isotherm and pseudo-second-order trends, respectively. Besides, the synthesized product was tested for seven times without significant loss in its sorption efficiency. 展开更多
关键词 Graphene-based spherical adsorbent layered double hydroxide(LDH) Adsorption Spray-assisted deep-frying
下载PDF
Layered double hydroxides as electrode materials for flexible energy storage devices 被引量:2
6
作者 Qifeng Lin Lili Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期30-45,共16页
To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on ele... To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on electrode materials for high-capacity flexible supercapacitors and secondary batteries,which have greatly aided the development of contemporary digital communications and electric vehicles.The use of layered double hydroxides(LDHs)as electrode materials has shown productive results over the last decade,owing to their easy production,versatile composition,low cost,and excellent physicochemical features.This review highlights the distinctive 2D sheet-like structures and electrochemical characteristics of LDH materials,as well as current developments in their fabrication strategies for expanding the application scope of LDHs as electrode materials for flexible supercapacitors and alkali metal(Li,Na,K)ion batteries. 展开更多
关键词 layered double hydroxide flexible energy storage devices structural designs electrochemical performances
下载PDF
Self-supported ultrathin NiCo layered double hydroxides nanosheets electrode for efficient electrosynthesis of formate 被引量:1
7
作者 Haoyuan Chi Jianlong Lin +6 位作者 Siyu Kuang Minglu Li Hai Liu Qun Fan Tianxiang Yan Sheng Zhang Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期267-275,I0008,共10页
Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,... Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,we fabricated self-supported ultrathin NiCo layered double hydroxides(LDHs)electrodes as anode for methanol electrooxidation to achieve a high formate production rate(5.89 mmol h^(-1)cm^(-2))coupled with CO_(2)electro-reduction at the cathode.A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO_(2)reduction can reach up to 188%driven by a low cell potential of only 2.06 V at 100 mA cm^(-2)in membrane-electrode assembly(MEA).Physical characterizations demonstrated that Ni^(3+)species,formed on the electrochemical oxidation of Ni-containing hydroxide,acted as catalytically active species for the oxidation of methanol to formate.Furthermore,DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni^(3+)in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation.This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions. 展开更多
关键词 CO_(2)reduction Methanol oxidation reaction FORMATE layered double hydroxides Oxygen vacancies
下载PDF
The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation
8
作者 Xiaodong Yang Na Yang +4 位作者 Ziqiang Gong Feifei Peng Bin Jiang Yongli Sun Luhong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期296-305,共10页
In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modific... In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water. 展开更多
关键词 Superhydrophobic sponge Ni-Co double layered oxides Thiol modification Oil absorption Oil/water separation
下载PDF
Advances in Mg-Al-layered double hydroxide steam coatings on Mg alloys:A review
9
作者 Shi-Qi Pan Fen Zhang +1 位作者 Cuie Wen Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1505-1518,共14页
Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film prep... Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film preparation technique has emerged in recent years because only pure water is required as the steam source and its environmentally friendly LDH coating fits the current need for green development.Moreover,this coating can effectively inhibit the corrosion of the Mg alloy substrate due to the chemical bonding between the coating and the Mg alloy substrate.This review systematically explains cutting-edge advancements in the growth mechanism and corrosion behavior of LDH steam coatings,and analyzes the advantages and limitations of the steam-coating method.The influencing factors including pressure,CO_(2)/CO_(3)^(2-),aluminum content of the substrate alloy,solution type,and acid-pickling pretreatment,as well as the post-treatment of steam-coating defects,are comprehensively elucidated,providing new insights into the development of the in situ steam-coating technique.Finally,existing issues and future prospects are discussed to further accelerate the widespread application of Mg alloys. 展开更多
关键词 Corrosion layered double hydroxide(LDH) Mg alloy Steam coating Surface modification
下载PDF
Identification and comparison of the local physicochemical structures of transition metal-based layered double hydroxides for high performance electrochemical oxygen evolution reactions
10
作者 Min Sung Kim Bipin Lamichhane +5 位作者 Ju-Hyeon Lee Jin-Gyu Bae Jeong Yeon Heo Hyeon Jeong Lee Shyam Kattel Ji Hoon Lee 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期89-97,I0004,共10页
Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of ... Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of water electrolysis for sustainable hydrogen production.Despite their excellent OER performance,the structural and electronic properties of LDHs,particularly during the OER process,remain to be poorly understood.In this study,a series of LDH catalysts is investigated through in situ X-ray absorption fine structure analyses and density functional theory(DFT) calculations.Our experimental results reveal that the LDH catalyst with equal amounts of Ni and Fe(NF-LDH) exhibits the highest OER activity and catalytic life span when compared with its counterparts having equal amounts of Ni and Co(NC-LDH)and Ni only(Ni-LDH).The NF-LDH shows a markedly enhanced OER kinetics compared to the NC-LDH and the Ni-LDH,as proven by the lower overpotentials of 180,240,and 310 mV,respectively,and the Tafel slopes of 35.1,43.4,and 62.7 mV dec^(-1),respectively.The DFT calculations demonstrate that the lowest overpotential of the NF-LDH is associated with the active sites located at the edge planes of NF-LDH in contrast to those located at the basal planes of Ni-LDH and NC-LDH.The current study pinpoints the active sites on various LDHs and presents strategies for optimizing the OER performance of the LDH catalysts. 展开更多
关键词 layered double hydroxides Oxygen evolution reaction In situ X-ray analyses Density functional theory Catalytic active sites
下载PDF
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
11
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
下载PDF
Environmentally Friendly Room Temperature Synthesis of 1-Tetralone over Layered Double Hydroxide-Hosted Sulphonato-Salen-Nickel(II) Complex
12
作者 Samiran Bhattacharjee Mohammad A. Matin +1 位作者 Hasina Akhter Simol Anowar Hosen 《Green and Sustainable Chemistry》 CAS 2023年第1期9-22,共14页
1-Tetralone, a useful synthetic intermediate in the manufacture of pharmaceuticals, agrochemicals and dyes, can be prepared by liquid phase catalytic oxidation of tetralin. Selective oxidation of tetralin to 1-tetralo... 1-Tetralone, a useful synthetic intermediate in the manufacture of pharmaceuticals, agrochemicals and dyes, can be prepared by liquid phase catalytic oxidation of tetralin. Selective oxidation of tetralin to 1-tetralone is still a big challenge with low-temperature processes using environmentally friendly routes even after decades of research. Herein, we demonstrate room-temperature oxidation of tetralin to 1-tetralone over layered double hydroxide-hosted sulphonato-salen-nickel(II) complex, LDH-[Ni-salen]. The layered double hydroxide-hosted sulphonato-salen-nickel(II) compound was characterized by powder X-ray diffraction, Fourier transform infrared spectrometer (FTIR), UV-Visible diffuse reflectance spectra, scanning electron microscopy (SEM) and elemental analysis. The theoretical calculations of free sulphonato-salen-nickel(II) complex using Density Functional Theory/CAM-B3LYP at the 6-311++ G(d,p) level of theory were also used to determine the orientation of the Ni-salen compound within the layered structure. The immobilized compound, LDH-[Ni-salen] was found to be an effective reusable catalyst for the oxidation of tetralin to 1-tetralone using a combination of trimethylacetaldehyde and molecular oxygen (14.5 psi) and at 25&deg;C. At 45.5% conversion, tetralin was converted to 1-tetralone with 77.2% selectivity at room temperature and atmospheric pressure after 24 h. The catalyst recycles test and hot filtration experiment showed that oxidation proceeded through Ni(II) sites in LDH-[Ni-salen]. The catalysts were reused several times without losing their catalytic activity and selectivity. The present results may provide a convenient strategy for the preparation of 1-tetralone using layered double hydroxide-based heterogeneous catalyst at ambient temperature for industrial application in near future. 展开更多
关键词 Sulphonato-Salen-Nickel(II) layered double Hydroxide Tetralin Oxidation Room Temperature 1-Tetralone
下载PDF
Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations
13
作者 Legeng Yu Nan Yao +5 位作者 Yu-Chen Gao Zhong-Heng Fu Bo Jiang Ruiping Li Cheng Tang Xiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期299-305,I0008,共8页
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano... Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes. 展开更多
关键词 Lithium batteries Graphite N-DOPING Electric double layer Molecular dynamics Constant potential method Electrode potential
下载PDF
Structure Regulation of Electric Double Layer via Hydrogen Bonding Effect to Realize High-Stability Lithium-Metal Batteries
14
作者 Sheng Liu Chaozhu Shu +8 位作者 Yu Yan Dayue Du Longfei Ren Ting Zeng Xiaojuan Wen Haoyang Xu Xinxiang Wang Guilei Tian Ying Zeng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期72-83,共12页
The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulat... The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed(p-hydroxybenzoic acid(pHA)is selected as proof-of-concept).According to the molecular dynamics(MD)simulation and density functional theory(DFT)calculation results,the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL,reduces the lowest unoccupied molecular orbital(LUMO)energy level of anions in the EDL,and the number of free solvent molecules,which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition.Based on this strategy,Li‖Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm^(-2),and the long-term cycle stability of Li‖Li cells is increased to 1200 h.In addition,the full cell pairing with the commercial LiFePO_(4)(LFP)cathodes exhibits stable cycling performance at 1C,with a capacity retention close to 90%after 200 cycles. 展开更多
关键词 electric double layer electrolyte additives intermolecular hydrogen bonds Li metal batteries p-Hydroxybenzoic acid
下载PDF
Synthesis and highly efficient photocatalytic activity of mixed oxides derived from ZnNiAl layered double hydroxides 被引量:6
15
作者 张丽 戴超华 +2 位作者 张秀秀 刘又年 阎建辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2380-2389,共10页
ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered d... ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered double hydroxides(LDHs) as precursors, followed by calcination under different temperatures. The as-obtained samples were characterized by SEM, HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photocatalytic activities of the samples were evaluated by degradation of methyl orange(MO) under the simulated sunlight irradiation. The effects of Zn/Ni/Al mole ratio and calcination temperature on the composition, morphology and photocatalytic activity of the samples were investigated in detail. The results indicated that compared with ZnNiAl-LDHs, the mixed-metal oxide showed superior photocatalytic performance for the degradation of MO. A maximum of 97.3% photocatalytic decoloration rate within 60 min was achieved from the LDH with the Zn/Ni/Al mole ratio of 2:1:1 and the calcination temperature of 500 ℃, which much exceeded that of Degussa P25 under the same conditions. The possible mechanism of photocatalytic degradation over ZnO/NiO/ZnAl2O4 was discussed. 展开更多
关键词 ZnNiAl layered double hydroxide mixed oxide photocatalytic degradation phototatalytic activity
下载PDF
Adsorption of glutamic acid from aqueous solution with calcined layered double Mg-Fe-CO_3 hydroxide 被引量:1
16
作者 焦飞鹏 帅丽 +3 位作者 于金刚 蒋新宇 陈晓青 杜邵龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3971-3978,共8页
Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as... Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as prepared Mg-Fe-LDH and calcined Mg-Fe-CLDH were used for removal of glutamic acid (Glu) from aqueous solution, respectively. Batch studies were carried out to address various experimental parameters such as contact time, pH, initial glutamic acid (Glu) concentration, co-existing anions and temperature. Glu was removed effectively (99.9%) under the optimized experimental conditions with Mg-Fe-CLDH. The adsorption kinetics follows the Ho’s pseudo second-order model. Isotherms for adsorption with Mg-Fe-CLDH at different solution temperatures were well described using the Langmuir model with a good correlation coefficient. The intraparticle diffusion model fitted the data well, which suggests that the intraparticle diffusion is not only the rate-limiting step. 展开更多
关键词 calcined layered double hydroxides glutamic acid ADSORPTION
下载PDF
Removal of vanadate anion by calcined Mg/Al-CO_3 layered double hydroxide in aqueous solution 被引量:3
17
作者 宋海磊 焦飞鹏 +3 位作者 蒋新宇 于金刚 陈晓青 杜邵龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3337-3345,共9页
Mg/Al-CO3 layered double hydroxide (LDH2) with Mg(II):Al(III) molar ratio of 2:1 was synthesized by co-precipitation method and its calcined product Mg2Al-CLDH(CLDH2) was prepared by heating Mg2Al-LDH at 773... Mg/Al-CO3 layered double hydroxide (LDH2) with Mg(II):Al(III) molar ratio of 2:1 was synthesized by co-precipitation method and its calcined product Mg2Al-CLDH(CLDH2) was prepared by heating Mg2Al-LDH at 773 K for 6 h. Removal of vanadate anion ( 3-4VO ) from aqueous solution on CLDH2 was studied. Batch studies were carried out to address various experimental parameters such as Mg/Al molar ratio, adsorbent dosage, initial concentration of solution, contact time and temperature. Vanadate was removed effectively at the optimized experimental conditions. The adsorption kinetics data fitted the pseudo-first-order model. Isotherms for adsorption vanadate by CLDH2 at different solution temperatures were well described using the Langmuir and Freundlich equations, and the isotherm parameters were calculated using linear regression analysis. The adsorption data fitted the langmuir model with good values of the correlation coefficient (R2〉0.999). The negative value ofΔGΘand the positive value ofΔHΘindicate that the adsorption processes are spontaneous endothermic in nature. The mechanism of adsorption suggests that the surface adsorption is the main process. 展开更多
关键词 layered double hydroxide VANADATE adsorption KINETICS THERMODYNAMICS
下载PDF
Synthesis and characterization of colored layered double hydroxides for thermal stabilizer 被引量:1
18
作者 刘循军 张玉超 +1 位作者 王娟 雷立旭 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期566-571,共6页
Colored layered double hydroxides (LDHs) can be synthesized by introducing colored cations such as Fe^3+ and Cr^3 +, which call be used as thermal stabilizers for polyvinyl chloride (PVC). The yellowish Mg/Fe an... Colored layered double hydroxides (LDHs) can be synthesized by introducing colored cations such as Fe^3+ and Cr^3 +, which call be used as thermal stabilizers for polyvinyl chloride (PVC). The yellowish Mg/Fe and bluish Mg/Cr LDHs are prepared by the co-precipitation method. The results show that the MgsCr_ CO3 and Mg3Fe_ CO3 colored layered double hydroxides can stabilize PVC for more than 30 min under the thermal aging temperature of 180 ℃. The preparation can use cheap Mg(OH) 2 instead of MgCl2, which produces a much smaller amount of the by-product NH4Cl. It is known that NH4Cl is a cheap fertilizer that is difficult to sell; therefore, the preparation is much greener and more economic than the one using magnesium salt. 展开更多
关键词 colored layered double hydroxides magnesiumhydroxide ferric chloride chromic chloride thermalstabilizer polyvinyl chloride
下载PDF
Enhanced corrosion resistance of micro-arc oxidation coated magnesium alloy by superhydrophobic Mg-Al layered double hydroxide coating 被引量:19
19
作者 Zhi-hu WANG Ju-mei ZHANG +2 位作者 Yan LI Li-jing BAI Guo-jun ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第10期2066-2077,共12页
To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31... To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31 alloy by using in-situ growth method followed by surface modification with stearic acid. The characteristics of different coatings were investigated by XRD, SEM and EDS. The effect of the hydrothermal treatment time on the formation of the LDH coatings was studied. The results demonstrated that the micro-pores and cracks of MAO coating were gradually sealed via in-situ growing LDH with prolonging hydrothermal treating time. Electrochemical measurement displayed that the lowest corrosion current density, the most positive corrosion potential and the highest impedance modulus were observed for superhydrophobic LDH/MAO coating compared with those of MAO coating and LDH/MAO coating. Immersion experiment proved that the superhydrophobic LDH/MAO coating with the active anti-corrosion capability significantly enhanced the long-term corrosion protection for MAO coated alloy. 展开更多
关键词 magnesium alloy micro-arc oxidation layered double hydroxide SUPERHYDROPHOBICITY corrosion resistance
下载PDF
Deep Penetration of Spudcan Foundation into Double Layered Soils 被引量:6
20
作者 刘君 胡玉霞 孔宪京 《China Ocean Engineering》 SCIE EI 2005年第2期309-324,共16页
The spudcan foundation has been widely used in offshore engineering for jack-up rigs. However, “punch through' failure often occurs where a stronger soil layer overlays a softer soil layer. In this study, spudcan... The spudcan foundation has been widely used in offshore engineering for jack-up rigs. However, “punch through' failure often occurs where a stronger soil layer overlays a softer soil layer. In this study, spudcan penetration into double layered soils is investigated numerically. The soil profile is set up as a stronger soil layer overlaying a softer soil layer, with the soil strength ratio (bottom soil strength / top soil strength) varied from 0.1 to 1.0 (1 means uniform soil). The bearing behaviour is discussed and the bearing capacity factors are given for various cases involving different layer thicknesses and different strength ratios of the two clay layers. The development of the plastic zones and the effect of soil self-weight on the bearing capacity are also discussed. From this study, it is found that, when a spudcan is distant from the soil layer boundary, the spudcan can be analysed with single soil layer data. However, when a spudcan becomes closer to the soil boundary layer, the influence of the lower soft soil layer is significant, and the bearing capacity of the spudcan decreases. The critical distance is an indication of the occurrence of “punch through' failure. The critical distance between the spudcan and the layer boundary is larger for a rough spudcan than the one for a smooth one, and the critical distance decreases with increasing soil strength ratio. The depth of cavity formed during initial spudcan penetration depends on the top layer soil strength, soil strength ratio and unit soil self-weight, and the cavity affects the spudcan bearing behaviour as well. 展开更多
关键词 spudcan foundation punch through failure double layered soil critical distance continuous penetration
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部