Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc.But it is difficult to judge a matrix is or not gen...Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc.But it is difficult to judge a matrix is or not generalized strictly diagonally dominant matrix.In this paper, by using the properties of α-chain diagonally dominant matrix, we obtain new criteria for judging generalized strictly diagonally dominant matrix, which enlarge the identification range.展开更多
In this paper, we provide some new necessary and sufficient conditions for generalized diagonally dominant matrices and also obtain some criteria for nongeneralized dominant matrices.
In this paper, we provide some new criteria conditions for generalized strictly diagonally dominant matrices, such that the corresponding results in [1] are generalized and improved.
Let DD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(jj)|≥A_iA_j,i≠j,i,j∈N}.PD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(kk)|≥A_iA_jA_k,i≠j≠k,i,j,k∈N}. In this paper,we show DD_0(R)PD_0(R),and the conditions under which the nu...Let DD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(jj)|≥A_iA_j,i≠j,i,j∈N}.PD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(kk)|≥A_iA_jA_k,i≠j≠k,i,j,k∈N}. In this paper,we show DD_0(R)PD_0(R),and the conditions under which the numbers of eigen vance of A∈PD_0(R)\DD_0(R)are equal to the numbers of a_(ii),i∈N in positive and negative real part respectively.Some couter examples are given which present the condnions can not be omitted.展开更多
In the paper,a necessary and sufficeent condition for generalized diagonal domiance matrices is given.Further, the relations among all generalized positive definite matrices are shown, also,some flaws and mistakes in...In the paper,a necessary and sufficeent condition for generalized diagonal domiance matrices is given.Further, the relations among all generalized positive definite matrices are shown, also,some flaws and mistakes in the references are corrected.展开更多
This paper deals with off-diagonal operator matrices and their applications in elasticity theory. Two kinds of completeness of the system of eigenvectors are proven, in terms of those of the compositions of two block ...This paper deals with off-diagonal operator matrices and their applications in elasticity theory. Two kinds of completeness of the system of eigenvectors are proven, in terms of those of the compositions of two block operators in the off-diagonal operator matrices. Using these results, the double eigenfunction expansion method for solving upper triangular matrix differential systems is proposed. Moreover, we apply the method to the two-dimensional elasticity problem and the problem of bending of rectangular thin plates on elastic foundation.展开更多
This paper obtains a necessary and sufficient condition for an irreducible complex matrix whose comparison matrix is a singular M-matrix to be singular. This is used to establish a necessary and sufficient condition f...This paper obtains a necessary and sufficient condition for an irreducible complex matrix whose comparison matrix is a singular M-matrix to be singular. This is used to establish a necessary and sufficient condition for a boundary point of Brualdi’s inclusion region of the eigenvalues of an irreducible complex matrix to be an eigenvalue.展开更多
It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obt...It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obtain the approximated solution of the matrix equation in the form AX = B. Moreover, the conditions are deduced to check the convergence of the homotopy series. Numerical implementations are adapted to illustrate the properties of the modified method.展开更多
A real square matrix whose non-diagonal elements are non-positive is called a Z-matrix. This paper shows a necessary and sufficient condition for non-singularity of two types of Z-matrices. The first is for the Z-matr...A real square matrix whose non-diagonal elements are non-positive is called a Z-matrix. This paper shows a necessary and sufficient condition for non-singularity of two types of Z-matrices. The first is for the Z-matrix whose row sums are all non-negative. The non-singularity condition for this matrix is that at least one positive row sum exists in any principal submatrix of the matrix. The second is for the Z-matrix which satisfies where . Let be the ith row and the jth column element of , and be the jth element of . Let be a subset of which is not empty, and be the complement of if is a proper subset. The non-singularity condition for this matrix is such that or such that for? . Robert Beauwens and Michael Neumann previously presented conditions similar to these conditions. In this paper, we present a different proof and show that these conditions can be also derived from theirs.展开更多
非奇 H 矩阵在计算数学和矩阵理论的研究中非常重要,本文对该类矩阵给出了一个简捷判别条 件,根据这一判别条件,在一定条件下非奇 H 矩阵某些行的非对角元的模和可以任意大。另外 非奇 H 矩阵的较为实用的必要条件较少,本文...非奇 H 矩阵在计算数学和矩阵理论的研究中非常重要,本文对该类矩阵给出了一个简捷判别条 件,根据这一判别条件,在一定条件下非奇 H 矩阵某些行的非对角元的模和可以任意大。另外 非奇 H 矩阵的较为实用的必要条件较少,本文给出了一个非奇 H 矩阵的较为实用的必要条件。展开更多
基金Supported by the National Natural Science Foundation of China(71261010)
文摘Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc.But it is difficult to judge a matrix is or not generalized strictly diagonally dominant matrix.In this paper, by using the properties of α-chain diagonally dominant matrix, we obtain new criteria for judging generalized strictly diagonally dominant matrix, which enlarge the identification range.
文摘In this paper, we provide some new necessary and sufficient conditions for generalized diagonally dominant matrices and also obtain some criteria for nongeneralized dominant matrices.
基金Supported by the Nature Science Foundation of Henan Province(2003110010)
文摘In this paper, we provide some new criteria conditions for generalized strictly diagonally dominant matrices, such that the corresponding results in [1] are generalized and improved.
文摘Let DD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(jj)|≥A_iA_j,i≠j,i,j∈N}.PD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(kk)|≥A_iA_jA_k,i≠j≠k,i,j,k∈N}. In this paper,we show DD_0(R)PD_0(R),and the conditions under which the numbers of eigen vance of A∈PD_0(R)\DD_0(R)are equal to the numbers of a_(ii),i∈N in positive and negative real part respectively.Some couter examples are given which present the condnions can not be omitted.
文摘In the paper,a necessary and sufficeent condition for generalized diagonal domiance matrices is given.Further, the relations among all generalized positive definite matrices are shown, also,some flaws and mistakes in the references are corrected.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10962004 and 11061019)the Doctoral Foundation of Inner Mongolia(Grant Nos.2009BS0101 and 2010MS0110)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070126002)the Chunhui Program of the Ministry of Education of China(Grant No.Z2009-1-01010)
文摘This paper deals with off-diagonal operator matrices and their applications in elasticity theory. Two kinds of completeness of the system of eigenvectors are proven, in terms of those of the compositions of two block operators in the off-diagonal operator matrices. Using these results, the double eigenfunction expansion method for solving upper triangular matrix differential systems is proposed. Moreover, we apply the method to the two-dimensional elasticity problem and the problem of bending of rectangular thin plates on elastic foundation.
文摘This paper obtains a necessary and sufficient condition for an irreducible complex matrix whose comparison matrix is a singular M-matrix to be singular. This is used to establish a necessary and sufficient condition for a boundary point of Brualdi’s inclusion region of the eigenvalues of an irreducible complex matrix to be an eigenvalue.
文摘It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obtain the approximated solution of the matrix equation in the form AX = B. Moreover, the conditions are deduced to check the convergence of the homotopy series. Numerical implementations are adapted to illustrate the properties of the modified method.
文摘A real square matrix whose non-diagonal elements are non-positive is called a Z-matrix. This paper shows a necessary and sufficient condition for non-singularity of two types of Z-matrices. The first is for the Z-matrix whose row sums are all non-negative. The non-singularity condition for this matrix is that at least one positive row sum exists in any principal submatrix of the matrix. The second is for the Z-matrix which satisfies where . Let be the ith row and the jth column element of , and be the jth element of . Let be a subset of which is not empty, and be the complement of if is a proper subset. The non-singularity condition for this matrix is such that or such that for? . Robert Beauwens and Michael Neumann previously presented conditions similar to these conditions. In this paper, we present a different proof and show that these conditions can be also derived from theirs.