The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron sp...The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.The catalytic property was strongly influenced by the Fe substitution.The relation between catalytic performance and the degree of Fe substitution was examined with regard to the structure and surface characteristics of the mixed oxides.The Fe-containing catalysts exhibited higher activity attributable to the possible(Fe2+,Mo6+) and (Fe3+,Mo5+)valency pairs,and the highest activity was observed for Sr2Mg0.2Fe0.8MoO6-δ.The enhancement of the catalytic activity may be correlated with the Fe-relating surface lattice oxygen species and was discussed in view of the presence of oxygen vacancies.展开更多
Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductanc...Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process.展开更多
A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr2FeMo06 (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits ...A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr2FeMo06 (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits I4/m symmetry. The cation order η of the sample increases to 98.9(2)% from 94.2(3)%, which is prepared by the traditional sol-gel method. The initial magnetization isotherm of the sample is detected at 300 K. Unit-cell magnetization for the current sample is 1.332 #s at 300 K, and the one for the traditional sol-gel method sample is 0.946#9. Unit-cell magnetization is enhanced to 40.80% by the quench-treatment technique. Quench treatment is an effective method of enhancing the Fe/Mo order and magnetic properties of double perovskite SFMO.展开更多
Photocatalytic reduction of CO2 with H2 O to syngas is an effective way for producing high value-added chemical feedstocks such as methanol and light olefins in industry.Nevertheless,the precise control of CO/H2 ratio...Photocatalytic reduction of CO2 with H2 O to syngas is an effective way for producing high value-added chemical feedstocks such as methanol and light olefins in industry.Nevertheless,the precise control of CO/H2 ratio from photocatalytic CO2 reduction reaction still poses a great challenge for the further application.Herein,we prepared a series of highly efficient heterostructure based on highly dispersed palladium supported on ultrathin Co Al-layered double hydroxide(LDH).In conjunction with a Ru-complex sensitizer,the molar ratios of CO/H2 can be tuned from 1:0.74 to 1:3 under visible-light irradiation(λ>400 nm).More interestingly,the syngas can be obtained under light irradiation atλ>600 nm.Structure characterization and density functional theory calculations revealed that the remarkable catalytic activity can be due to the supported palladium,which improved the charge transfer efficiency.Meanwhile,more H atoms were used to generate H2 on the supported palladium for further tunable CO/H2 ratio.This work demonstrates a new strategy for harnessing abundant solar-energy to produce syngas from a CO2 feedstock.展开更多
Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered doubl...Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered double hydroxides(LDHs)have been proved to be one of the most efficient materials for oxygen evolution reaction(OER),however,still suffered from low conductivity and sluggish kinetics for hydrogen evolution reaction(HER),which largely inhibited the overall water splitting efficiency.To address this dilemma,enormous approaches including doping regulation,intercalation tuning and defect engineering are therefore rationally designed and developed.Herein,we focus on the recent exciting progress of LDHs hybridization with other two‐dimensional(2D)materials for water splitting reactions,not barely for enhancing OER efficiency but also for boosting HER activity.Particularly,the structural features,morphologies,charge transfer and synergistic effects for the heterostructure/heterointerface that influence the electrocatalytic performance are discussed in details.The hybrid 2D building blocks not only serve as additional conductivity and structural supported but also promote electron transfer at the interfaces and further enhance the electrocatalytic performance.The construction and application of the nanohybrid materials will guide a new direction in developing multifunctional materials based on LDHs,which will contribute to energy conversion and storage.展开更多
The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-...The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.展开更多
Various novel double metal cyanide (DMC) catalysts were successfully prepared by modifying the central metal (M) and one of cyanide ion (CN-) in Zna[M(CN)b]c complex. Such modifications have significant impact...Various novel double metal cyanide (DMC) catalysts were successfully prepared by modifying the central metal (M) and one of cyanide ion (CN-) in Zna[M(CN)b]c complex. Such modifications have significant impact on the catalytic efficiency as well as the polymer selectivity for the reaction of PO/CO2. Zn-Ni(Ⅱ) DMC is a potential catalyst for alternating copolymerization of PO/CO2,and DMC catalysts based on Zn3[Co(CN)5X]2 (X = Br^- and N3^-) exhibit moderate efficiency for the production of polycarbonates.This research presents the preliminary exploration of novel DMC complex via chemical modification of its central metal and ligand.展开更多
Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the...Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the preparation of structured NiFe catalysts on washcoated cordierite monoliths for CO_(2) methanation.The NiFe catalysts were derived from in-situ grown layered double hydroxides(LDHs)via urea hydrolysis.The influence of different washcoat materials,i.e.,alumina and silica colloidal suspensions on the formation of LDHs layer was investigated,together with the impact of total metal concentration.NiFe LDHs were precipitated on the exterior surface of cordierite washcoated with alumina,while it was found to deposit further inside the channel wall of monolith washcoated with silica due to different intrinsic properties of the colloidal solutions.On the other hand,the thickness of in-situ grown LDHs layers and the catalyst loading could be increased by high metal concentration.The best monolithic catalyst(COR-AluCC-0.5M)was robust,having a thin and well-adhered catalytic layer on the cordierite substrate.As a result,high methane yield was obtained from CO_(2) methanation at high flow rate on this structured NiFe catalysts.The monolithic catalysts appeared as promising structured catalysts for the development of industrial methanation reactor.展开更多
Based on simulations of the IPCC 20C3M and SRES A1B experiments in ten coupled models, the Asian summer mon-soon (ASM) response to CO2 doubling and the different responses among models are examined. Nine models show t...Based on simulations of the IPCC 20C3M and SRES A1B experiments in ten coupled models, the Asian summer mon-soon (ASM) response to CO2 doubling and the different responses among models are examined. Nine models show the similar results that the weakening of land-ocean thermal contrast caused by the CO2 doubling contributes to a weaker large-scale ASM circulation. Further analysis in this study also shows that the major ASM components,such as the Somali cross-equatorial flow,the low level India-South China Sea monsoon trough,and the upper level tropical easterly jet stream, weaken as CO2 doubles.However,the ASM rainfall increases as a result of the increased moisture from the warmer Indian Ocean and the South China Sea, and the enhanced northward moisture transport over the ASM region.For the response of enhanced northward moisture transport over South Asia, the positive contribution of moisture content increase in the Indian Ocean is dominant and the negative contribution of the weaker mon-soon circulation is secondary at 850 hPa,but both have positive contribution to the total moisture transport along the East China coast.The paradox of the weaker ASM circulation and the increasing precipitation in CO2 doubling is confirmed.It is found that strengthening of northward moisture transport could intensify the precipitation and atmospheric heat source over the north Arabian Sea and East China,and result in enhanced southwesterly at 850 hPa as global warming occurs.All ten models show significant enhanced southwesterly response over the north Arabian Sea,and six of them show enhanced southwesterly response along the East China coast.展开更多
Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·...Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·Mg-Al LDH.We propose that CO_(2) can be used for the desorption of Cl^(-)from Cl·Mg-Al LDH to regenerate CO_(3)·Mg-Al LDH.Herein,we studied the desorption of a from CI-Mg-Al LDH by adding water to Cl·Mg-Al LDH and blowing CO_(2) into it.We also analyzed the effects of temperature and water addition speed on the desorption of CI^(-)from Cl·Mg-Al LDH.Our results show that the added water adhered to CI·Mg-Al LDH and that CO_(2) in the gaseous phase was dissolved in this adhered water,thus generating CO_(3)^(2-).Therefore,anion exchange occurred between CO_(3)^(2-) and Cl^(-)in the Cl·Mg-Al LDH,thus desorbing Cl^(-).展开更多
基金the financial supports from the National Natural Science Foundation of China(No.20703042)National Basic Research Program of China(No.2010CB923300)+1 种基金USTC-NSRL Association Funding(No.KY2060030009)the Fundamental Research Funds for the Central Universities
文摘The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.The catalytic property was strongly influenced by the Fe substitution.The relation between catalytic performance and the degree of Fe substitution was examined with regard to the structure and surface characteristics of the mixed oxides.The Fe-containing catalysts exhibited higher activity attributable to the possible(Fe2+,Mo6+) and (Fe3+,Mo5+)valency pairs,and the highest activity was observed for Sr2Mg0.2Fe0.8MoO6-δ.The enhancement of the catalytic activity may be correlated with the Fe-relating surface lattice oxygen species and was discussed in view of the presence of oxygen vacancies.
文摘Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process.
基金Supported by the National Natural Science Foundation of China under Grant No U1304110the Doctoral Science Foundation of Henan Normal University under Grant No 01026500109
文摘A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr2FeMo06 (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits I4/m symmetry. The cation order η of the sample increases to 98.9(2)% from 94.2(3)%, which is prepared by the traditional sol-gel method. The initial magnetization isotherm of the sample is detected at 300 K. Unit-cell magnetization for the current sample is 1.332 #s at 300 K, and the one for the traditional sol-gel method sample is 0.946#9. Unit-cell magnetization is enhanced to 40.80% by the quench-treatment technique. Quench treatment is an effective method of enhancing the Fe/Mo order and magnetic properties of double perovskite SFMO.
基金supported by the Fundamental Research Funds for the Central Universities(XK1802-6,XK1902,XK1803-05,12060093063,2312018RC07)the National Natural Science Foundation of China(U1707603,21878008,21625101,20190816)。
文摘Photocatalytic reduction of CO2 with H2 O to syngas is an effective way for producing high value-added chemical feedstocks such as methanol and light olefins in industry.Nevertheless,the precise control of CO/H2 ratio from photocatalytic CO2 reduction reaction still poses a great challenge for the further application.Herein,we prepared a series of highly efficient heterostructure based on highly dispersed palladium supported on ultrathin Co Al-layered double hydroxide(LDH).In conjunction with a Ru-complex sensitizer,the molar ratios of CO/H2 can be tuned from 1:0.74 to 1:3 under visible-light irradiation(λ>400 nm).More interestingly,the syngas can be obtained under light irradiation atλ>600 nm.Structure characterization and density functional theory calculations revealed that the remarkable catalytic activity can be due to the supported palladium,which improved the charge transfer efficiency.Meanwhile,more H atoms were used to generate H2 on the supported palladium for further tunable CO/H2 ratio.This work demonstrates a new strategy for harnessing abundant solar-energy to produce syngas from a CO2 feedstock.
文摘Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered double hydroxides(LDHs)have been proved to be one of the most efficient materials for oxygen evolution reaction(OER),however,still suffered from low conductivity and sluggish kinetics for hydrogen evolution reaction(HER),which largely inhibited the overall water splitting efficiency.To address this dilemma,enormous approaches including doping regulation,intercalation tuning and defect engineering are therefore rationally designed and developed.Herein,we focus on the recent exciting progress of LDHs hybridization with other two‐dimensional(2D)materials for water splitting reactions,not barely for enhancing OER efficiency but also for boosting HER activity.Particularly,the structural features,morphologies,charge transfer and synergistic effects for the heterostructure/heterointerface that influence the electrocatalytic performance are discussed in details.The hybrid 2D building blocks not only serve as additional conductivity and structural supported but also promote electron transfer at the interfaces and further enhance the electrocatalytic performance.The construction and application of the nanohybrid materials will guide a new direction in developing multifunctional materials based on LDHs,which will contribute to energy conversion and storage.
基金Project(51478164)supported by the National Natural Science Foundation of ChinaProject(BK20181306)supported by Natural Science Foundation of Jiangsu Province,China。
文摘The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.
基金the National Natural Science Foundation of China(No.50273031)China Postdoctoral Science Foundation(No.20060400339).
文摘Various novel double metal cyanide (DMC) catalysts were successfully prepared by modifying the central metal (M) and one of cyanide ion (CN-) in Zna[M(CN)b]c complex. Such modifications have significant impact on the catalytic efficiency as well as the polymer selectivity for the reaction of PO/CO2. Zn-Ni(Ⅱ) DMC is a potential catalyst for alternating copolymerization of PO/CO2,and DMC catalysts based on Zn3[Co(CN)5X]2 (X = Br^- and N3^-) exhibit moderate efficiency for the production of polycarbonates.This research presents the preliminary exploration of novel DMC complex via chemical modification of its central metal and ligand.
文摘Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the preparation of structured NiFe catalysts on washcoated cordierite monoliths for CO_(2) methanation.The NiFe catalysts were derived from in-situ grown layered double hydroxides(LDHs)via urea hydrolysis.The influence of different washcoat materials,i.e.,alumina and silica colloidal suspensions on the formation of LDHs layer was investigated,together with the impact of total metal concentration.NiFe LDHs were precipitated on the exterior surface of cordierite washcoated with alumina,while it was found to deposit further inside the channel wall of monolith washcoated with silica due to different intrinsic properties of the colloidal solutions.On the other hand,the thickness of in-situ grown LDHs layers and the catalyst loading could be increased by high metal concentration.The best monolithic catalyst(COR-AluCC-0.5M)was robust,having a thin and well-adhered catalytic layer on the cordierite substrate.As a result,high methane yield was obtained from CO_(2) methanation at high flow rate on this structured NiFe catalysts.The monolithic catalysts appeared as promising structured catalysts for the development of industrial methanation reactor.
基金supported by the NSFC 40830106 and 40975038Innovation Group Project 40921004Ministry of Science and Technology of China(National Key Program for Developing Basic Science 2007CB411803 and 2010CB428904)
文摘Based on simulations of the IPCC 20C3M and SRES A1B experiments in ten coupled models, the Asian summer mon-soon (ASM) response to CO2 doubling and the different responses among models are examined. Nine models show the similar results that the weakening of land-ocean thermal contrast caused by the CO2 doubling contributes to a weaker large-scale ASM circulation. Further analysis in this study also shows that the major ASM components,such as the Somali cross-equatorial flow,the low level India-South China Sea monsoon trough,and the upper level tropical easterly jet stream, weaken as CO2 doubles.However,the ASM rainfall increases as a result of the increased moisture from the warmer Indian Ocean and the South China Sea, and the enhanced northward moisture transport over the ASM region.For the response of enhanced northward moisture transport over South Asia, the positive contribution of moisture content increase in the Indian Ocean is dominant and the negative contribution of the weaker mon-soon circulation is secondary at 850 hPa,but both have positive contribution to the total moisture transport along the East China coast.The paradox of the weaker ASM circulation and the increasing precipitation in CO2 doubling is confirmed.It is found that strengthening of northward moisture transport could intensify the precipitation and atmospheric heat source over the north Arabian Sea and East China,and result in enhanced southwesterly at 850 hPa as global warming occurs.All ten models show significant enhanced southwesterly response over the north Arabian Sea,and six of them show enhanced southwesterly response along the East China coast.
文摘Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·Mg-Al LDH.We propose that CO_(2) can be used for the desorption of Cl^(-)from Cl·Mg-Al LDH to regenerate CO_(3)·Mg-Al LDH.Herein,we studied the desorption of a from CI-Mg-Al LDH by adding water to Cl·Mg-Al LDH and blowing CO_(2) into it.We also analyzed the effects of temperature and water addition speed on the desorption of CI^(-)from Cl·Mg-Al LDH.Our results show that the added water adhered to CI·Mg-Al LDH and that CO_(2) in the gaseous phase was dissolved in this adhered water,thus generating CO_(3)^(2-).Therefore,anion exchange occurred between CO_(3)^(2-) and Cl^(-)in the Cl·Mg-Al LDH,thus desorbing Cl^(-).